ICML 2024:AI也会刷抖音!清华领衔发布短视频全模态理解新模型

简介: 【8月更文挑战第20天】SALMONN是由清华大学在ICML 2024发表的一种开创性的多模态模型,专为短视频全模态理解设计。它集成了预训练文本大模型与语音、音频编码器,能直接处理多样音频输入,在自动语音识别、翻译、情绪识别等任务中表现出色。SALMONN展现了令人兴奋的新能力,如翻译未训练语言和基于语音的问答。通过少样本激活微调,可进一步发掘其跨模态潜能。尽管如此,模型的计算成本和泛化能力仍是待克服的挑战。SALMONN标志着AI在具备通用听觉理解方面迈出重要一步。[论文链接: https://arxiv.org/abs/2310.13289]

在人工智能(AI)领域,全模态理解一直是一个备受关注的研究方向。最近,一篇论文在ICML 2024上引起了广泛关注,该论文由清华大学领衔发布,提出了一种名为SALMONN(Speech Audio Language Music Open Neural Network)的新型模型,旨在实现对短视频的全模态理解。

SALMONN是一种多模态模型,它通过整合预训练的文本大型语言模型(LLM)、语音和音频编码器,构建了一个能够直接处理和理解一般音频输入的统一模型。这种创新的设计使得SALMONN在多个语音和音频任务上表现出色,包括自动语音识别和翻译、基于听觉信息的问答、情绪识别、说话人验证以及音乐和音频字幕等。

除了在训练任务上的出色表现,SALMONN还展示了一些在训练过程中未出现过的新兴能力。例如,它可以将语音翻译成未经训练的语言,进行基于语音的槽填充,执行基于口头查询的问答,以及基于音频的故事讲述和语音音频联合推理等。这些新兴能力的出现,进一步证明了SALMONN在全模态理解方面的潜力。

为了探索这些新兴能力,研究人员提出了一种新颖的少样本激活微调方法。这种方法可以激活模型中的跨模态新兴能力,从而进一步扩展了SALMONN的应用范围。

SALMONN的出现被认为是AI领域迈向具有通用听觉能力的一步。作为首个此类模型,它为研究人员提供了一个强大的工具,可以用于探索和开发更先进的全模态理解系统。

然而,尽管SALMONN在全模态理解方面取得了显著的进展,但它仍然面临一些挑战。首先,模型的复杂性可能导致训练和推理过程中的计算成本较高。其次,模型的泛化能力仍然有待提高,特别是在处理未见过的模态组合时。

为了解决这些挑战,未来的研究可以集中在以下几个方面。首先,研究人员可以探索更高效的模型架构和训练方法,以降低计算成本并提高模型的泛化能力。其次,他们可以研究如何更好地整合不同模态的信息,以实现更准确和全面的全模态理解。最后,研究人员可以探索将SALMONN应用于实际场景的方法,例如视频内容理解、人机交互等,以进一步验证其有效性和实用性。

SALMONN论文链接:https://arxiv.org/abs/2310.13289

目录
相关文章
|
29天前
|
机器学习/深度学习 人工智能 并行计算
"震撼!CLIP模型:OpenAI的跨模态奇迹,让图像与文字共舞,解锁AI理解新纪元!"
【10月更文挑战第14天】CLIP是由OpenAI在2021年推出的一种图像和文本联合表示学习模型,通过对比学习方法预训练,能有效理解图像与文本的关系。该模型由图像编码器和文本编码器组成,分别处理图像和文本数据,通过共享向量空间实现信息融合。CLIP利用大规模图像-文本对数据集进行训练,能够实现zero-shot图像分类、文本-图像检索等多种任务,展现出强大的跨模态理解能力。
79 2
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
当语言遇见智慧火花:GPT家族历代模型大起底,带你见证从平凡到卓越的AI进化奇迹!
【10月更文挑战第6天】随着自然语言处理技术的进步,GPT系列模型(Generative Pre-trained Transformers)成为该领域的明星。从GPT-1的开创性工作,到GPT-2在规模与性能上的突破,再到拥有1750亿参数的GPT-3及其无需微调即可执行多种NLP任务的能力,以及社区驱动的GPT-NeoX,这些模型不断进化。虽然它们展现出强大的语言理解和生成能力,但也存在如生成错误信息或偏见等问题。本文将对比分析各代GPT模型的特点,并通过示例代码展示其部分功能。
109 2
|
2月前
|
人工智能 测试技术 API
AI计算机视觉笔记二十 九:yolov10竹签模型,自动数竹签
本文介绍了如何在AutoDL平台上搭建YOLOv10环境并进行竹签检测与计数。首先从官网下载YOLOv10源码并创建虚拟环境,安装依赖库。接着通过官方模型测试环境是否正常工作。然后下载自定义数据集并配置`mycoco128.yaml`文件,使用`yolo detect train`命令或Python代码进行训练。最后,通过命令行或API调用测试训练结果,并展示竹签计数功能。如需转载,请注明原文出处。
|
2月前
|
机器学习/深度学习 人工智能 UED
OpenAI o1模型:AI通用复杂推理的新篇章
OpenAI发布了其最新的AI模型——o1,这款模型以其独特的复杂推理能力和全新的训练方式,引起了业界的广泛关注。今天,我们就来深入剖析o1模型的特点、背后的原理,以及一些有趣的八卦信息。
318 73
|
8天前
|
人工智能 算法 搜索推荐
清华校友用AI破解162个高数定理,智能体LeanAgent攻克困扰陶哲轩难题!
清华校友开发的LeanAgent智能体在数学推理领域取得重大突破,成功证明了162个未被人类证明的高等数学定理,涵盖抽象代数、代数拓扑等领域。LeanAgent采用“持续学习”框架,通过课程学习、动态数据库和渐进式训练,显著提升了数学定理证明的能力,为数学研究和教育提供了新的思路和方法。
19 3
|
21天前
|
人工智能
AI科学家太多,谁靠谱一试便知!普林斯顿新基准CORE-Bench:最强模型仅有21%准确率
【10月更文挑战第21天】普林斯顿大学研究人员提出了CORE-Bench,一个基于计算可重复性的AI代理基准,涵盖计算机科学、社会科学和医学领域的270个任务。该基准旨在评估AI代理在科学研究中的准确性,具有多样性、难度级别和现实相关性等特点,有助于推动AI代理的发展并提高计算可重复性。
40 4
|
30天前
|
人工智能 自然语言处理
从迷茫到精通:揭秘模型微调如何助你轻松驾驭AI新热点,解锁预训练模型的无限潜能!
【10月更文挑战第13天】本文通过简单的问题解答形式,结合示例代码,详细介绍了模型微调的全流程。从选择预训练模型、准备新任务数据集、设置微调参数,到进行微调训练和评估调优,帮助读者全面理解模型微调的技术细节和应用场景。
67 6
|
1月前
|
人工智能 自然语言处理 安全
【通义】AI视界|Adobe推出文生视频AI模型,迎战OpenAI和Meta
本文精选了过去24小时内的重要科技新闻,包括微软人工智能副总裁跳槽至OpenAI、Adobe推出文本生成视频的AI模型、Meta取消高端头显转而开发超轻量设备、谷歌与核能公司合作为数据中心供电,以及英伟达股价创下新高,市值接近3.4万亿美元。这些动态展示了科技行业的快速发展和激烈竞争。点击链接或扫描二维码获取更多资讯。
|
1月前
|
机器学习/深度学习 人工智能 TensorFlow
解锁AI潜力:让开源模型在私有环境绽放——手把手教你搭建专属智能服务,保障数据安全与性能优化的秘密攻略
【10月更文挑战第8天】本文介绍了如何将开源的机器学习模型(如TensorFlow下的MobileNet)进行私有化部署,包括环境准备、模型获取与转换、启动TensorFlow Serving服务及验证部署效果等步骤,适用于希望保护用户数据并优化服务性能的企业。
50 4
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
揭开模型微调Fine-Tuning的神秘面纱:如何在预训练基础上巧妙调整,解锁定制AI解决方案的秘密武器
【10月更文挑战第8天】模型微调是在预训练模型基础上,利用特定领域数据进一步训练,以优化模型在特定任务上的表现。此方法广泛应用于自然语言处理和计算机视觉等领域,通过调整预训练模型的部分或全部参数,结合适当的正则化手段,有效提升模型性能。例如,使用Hugging Face的Transformers库对BERT模型进行微调,以改善文本匹配任务的准确率。
54 1

热门文章

最新文章