DreamerV2

简介: DreamerV2

DreamerV2

DreamerV2是一个用于强化学习的算法,专注于从像素输入中学习复杂的行为。它是Dreamer算法的升级版本,由DeepMind的研究团队开发。DreamerV2利用世界模型的概念,这意味着它通过学习一个模型来预测环境的未来状态,从而在这个预测的世界里进行计划和决策。这种方法使得算法能够在高效地使用数据方面表现出色,并且能够在仅从原始像素输入中进行学习的情况下,学会执行复杂的任务。

强化学习是机器学习的一个领域。

这就像训练宠物一样。当宠物做出了指定动作之后,我们给它一些食物作为奖励,使它更加坚信只要做出那个动作就会得到奖励。

这种训练叫 Reinforcement Learning(强化学习,简称 RL

特性

模型基础学习:DreamerV2首先学习一个模型来预测环境的动态。这个模型能够预测未来的观测值和奖励,基于过去的观测值、行动和当前的隐状态。

潜在空间规划:一旦模型被学习,DreamerV2在潜在(隐)空间中使用这个模型进行决策规划。潜在空间是一个较低维度的表示空间,可以更高效地处理和规划。

从像素到行动:DreamerV2能够直接从像素输入中学习策略和价值函数,无需手工设计的状态表示。这使得它能够在各种复杂的环境中应用,包括那些只提供视觉输入的环境。

数据高效性:通过在其学习的模型上进行规划和决策,DreamerV2可以更高效地利用经验数据,与那些需要大量交互数据才能学习的方法相比,这是一个显著的优势。

应用

DreamerV2适用于各种强化学习任务,特别是那些环境信息通过高维感觉输入(如视频帧)提供的任务。它在连续控制任务和一些游戏环境中表现出色,证明了其作为一种强大的强化学习算法的能力。

用DreamerV2玩小游戏

下载代码

https://github.com/danijar/dreamerv2

安装环境

pip install tensorflow
pip install tensorflow_probability
pip install pandas
pip install matplotlib
pip install ruamel.yaml
pip install 'gym[atari]'
pip install dm_control

训练

#Train on Atari
python3 dreamerv2/train.py --logdir ~/logdir/atari_pong/dreamerv2/1 --configs atari --task atari_pong
# Train on DM Control
python3 dreamerv2/train.py --logdir ~/logdir/dmc_walker_walk/dreamerv2/1  --configs dmc_vision --task dmc_walker_walk

使用Tensorboard监控训练情况。

# Monitor results
tensorboard --logdir ~/logdir

Generate plots

# Generate plots
python3 common/plot.py --indir ~/logdir --outdir ~/plots --xaxis step --yaxis eval_return --bins 1e6


相关文章
|
存储 DataWorks Unix
Dataworks数据集成之“文本数据”
Dataworks不是支持文本数据导入么?为什么Excel数据不能导入?CSV文件不就是Excel文件么?关于这些问题,我整理了一篇文章进行解释。
961 2
|
5月前
|
NoSQL 数据可视化 Redis
Mac安装Redis
Mac安装Redis
96 3
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
医疗行业的语音识别技术解析:AI多模态能力平台的应用与架构
AI多模态能力平台通过语音识别技术,实现实时转录医患对话,自动生成结构化数据,提高医疗效率。平台具备强大的环境降噪、语音分离及自然语言处理能力,支持与医院系统无缝集成,广泛应用于门诊记录、多学科会诊和急诊场景,显著提升工作效率和数据准确性。
|
3月前
|
网络协议 定位技术 Windows
Windows Server 2019 DNS服务器搭建
Windows Server 2019 DNS服务器搭建
110 1
|
5月前
|
开发者 UED
Axure“Web高端交互元件库”:产品与设计的得力助手
这套“Web高端交互元件库”精心构建了四大板块内容,分别是登陆首页集合、Web框架集合、表单元件集合以及主流后台组件。每一板块都包含了大量实用且美观的交互元件,设计师与开发者可以根据具体项目需求,快速找到并应用这些元件,从而大大提升工作效率。
|
5月前
|
关系型数据库 MySQL 数据安全/隐私保护
Mac安装Mysql5.7
Mac安装Mysql5.7
145 5
|
5月前
|
缓存 关系型数据库 MySQL
Mac安装brew
Mac安装brew
288 5
|
8月前
|
数据采集 供应链 安全
利用大数据优化业务流程:策略与实践
【5月更文挑战第11天】本文探讨了利用大数据优化业务流程的策略与实践,包括明确业务目标、构建大数据平台、数据采集整合、分析挖掘及流程优化。通过实例展示了电商和制造企业如何利用大数据改进库存管理和生产流程,提高效率与客户满意度。随着大数据技术进步,其在业务流程优化中的应用将更加广泛和深入,企业需积极采纳以适应市场和客户需求。
|
5月前
|
网络协议 测试技术 Apache
测试Netty高并发工具
测试Netty高并发工具
127 3
|
5月前
|
Python
Mac安装Python3.12开发环境
Mac安装Python3.12开发环境
166 2