Unity3D学习笔记8——GPU实例化(3)

简介: Unity3D学习笔记8——GPU实例化(3)

Unity3D学习笔记8——GPU实例化(3)

目录

1. 概述

在前两篇文章《Unity3D学习笔记6——GPU实例化(1)》《Unity3D学习笔记6——GPU实例化(2)》分别介绍了通过简单的顶点着色器+片元着色器,以及通过表面着色器实现GPU实例化的过程。而在Unity的官方文档Creating shaders that support GPU instancing里,也提供了一个GPU实例化的案例,这里就详细论述一下。

2. 详论

2.1. 自动实例化

一个有意思的地方在于,Unity提供的标准材质支持自动实例化,而不用像《Unity3D学习笔记6——GPU实例化(1)》《Unity3D学习笔记6——GPU实例化(2)》那样额外编写脚本和Shader。并且,会自动将transform,也就是模型矩阵作为每个实例的属性。

照例,还是编写一个脚本挂到一个空的GameObject对象上:

using UnityEngine;
public class Note8Main : MonoBehaviour
{
    public Mesh mesh;
    public Material material;
    public int instanceCount = 5000;
    // Start is called before the first frame update
    void Start()
    {
        MaterialPropertyBlock props = new MaterialPropertyBlock();
      
        for (int i = 0; i < instanceCount; i++)
        {
            GameObject go = new GameObject();
            go.name = i.ToString();
            MeshFilter mf = go.AddComponent<MeshFilter>();
            mf.mesh = mesh;
            MeshRenderer mr = go.AddComponent<MeshRenderer>();
            mr.material = material;
            
            go.transform.position = Random.insideUnitSphere * 5;
            go.transform.eulerAngles = new Vector3(Random.Range(0.0f, 90.0f), Random.Range(0.0f, 90.0f), Random.Range(0.0f, 90.0f));
            float s = Random.value;
            go.transform.localScale = new Vector3(s, s, s);
       
            go.transform.parent = gameObject.transform;
        }
    }
    // Update is called once per frame
    void Update()
    {
        
    }
}

这个脚本的意思是,给挂接的GameObject下新建很多GameObject,它们使用我们传入的Mesh和Material,但是位置、姿态和大小是随机的。传入的Mesh使用Unity自带的胶囊体,Material使用Unity的标准材质。运行结果如下:

这个时候Unity还没有自动实例化,打开Frame Debug就可以看到:

这个时候我们可以在使用的材质上勾选打开实例化的选项:

再次运行,就会在Frame Debug看到Unity实现了自动实例化,绘制的批次明显减少,并且性能会有所提升:

可以看到确实是自动进行实例化绘制了,但是这种方式却似乎存在实例化个数的上限,所有的实例化数据还是分成了好几个批次进行绘制。与《Unity3D学习笔记6——GPU实例化(1)》《Unity3D学习笔记6——GPU实例化(2)》提到的通过底层接口Graphic进行实例化绘制相比,效率还是要低一些。

2.2. MaterialPropertyBlock

自动实例化只能将transform,也就是模型矩阵作为每个实例的属性。如果需要增加自己的实例属性,就需要使用MaterialPropertyBlock,也就是材质属性块。

修改上面的脚本:

using UnityEngine;
public class Note8Main : MonoBehaviour
{
    public Mesh mesh;
    public Material material;
    public int instanceCount = 5000;
    // Start is called before the first frame update
    void Start()
    {
        MaterialPropertyBlock props = new MaterialPropertyBlock();
      
        for (int i = 0; i < instanceCount; i++)
        {
            GameObject go = new GameObject();
            go.name = i.ToString();
            MeshFilter mf = go.AddComponent<MeshFilter>();
            mf.mesh = mesh;
            MeshRenderer mr = go.AddComponent<MeshRenderer>();
            mr.material = material;
            float r = Random.Range(0.0f, 1.0f);
            float g = Random.Range(0.0f, 1.0f);
            float b = Random.Range(0.0f, 1.0f);
            props.SetColor("_Color", new Color(r, g, b));
            mr.SetPropertyBlock(props);
            go.transform.position = Random.insideUnitSphere * 5;
            go.transform.eulerAngles = new Vector3(Random.Range(0.0f, 90.0f), Random.Range(0.0f, 90.0f), Random.Range(0.0f, 90.0f));
            float s = Random.value;
            go.transform.localScale = new Vector3(s, s, s);
       
            go.transform.parent = gameObject.transform;
        }
    }
    // Update is called once per frame
    void Update()
    {
        
    }
}

脚本使用的材质,其使用的Shader如下,可以直接在Standard Surface Shader的基础上改:

Shader "Custom/HiddenSurfaceIntanceShader"
{
    Properties
    {
        _Color ("Color", Color) = (1,1,1,1)
        _MainTex ("Albedo (RGB)", 2D) = "white" {}
        _Glossiness ("Smoothness", Range(0,1)) = 0.5
        _Metallic ("Metallic", Range(0,1)) = 0.0
    }
    SubShader
    {
        Tags { "RenderType"="Opaque" }
        LOD 200
        CGPROGRAM
        // Physically based Standard lighting model, and enable shadows on all light types
        #pragma surface surf Standard fullforwardshadows
        // Use shader model 3.0 target, to get nicer looking lighting
        #pragma target 3.0
        sampler2D _MainTex;
        struct Input
        {
            float2 uv_MainTex;
        };
        half _Glossiness;
        half _Metallic;
        //fixed4 _Color;
        // Add instancing support for this shader. You need to check 'Enable Instancing' on materials that use the shader.
        // See https://docs.unity3d.com/Manual/GPUInstancing.html for more information about instancing.
        // #pragma instancing_options assumeuniformscaling
        UNITY_INSTANCING_BUFFER_START(Props)
            // put more per-instance properties here
      UNITY_DEFINE_INSTANCED_PROP(fixed4, _Color)
        UNITY_INSTANCING_BUFFER_END(Props)
        void surf (Input IN, inout SurfaceOutputStandard o)
        {
            // Albedo comes from a texture tinted by color
            //fixed4 c = tex2D (_MainTex, IN.uv_MainTex) * _Color;
      fixed4 c = tex2D (_MainTex, IN.uv_MainTex) * UNITY_ACCESS_INSTANCED_PROP(Props, _Color);
            o.Albedo = c.rgb;
            // Metallic and smoothness come from slider variables
            o.Metallic = _Metallic;
            o.Smoothness = _Glossiness;
            o.Alpha = c.a;
        }
        ENDCG
    }
    FallBack "Diffuse"
}

关键的代码在于Unity内置宏UNITY_INSTANCING_BUFFER_START和UNITY_INSTANCING_BUFFER_END、UNITY_DEFINE_INSTANCED_PROP定义了实例化属性,在着色器中,通过内置宏UNITY_ACCESS_INSTANCED_PROP来获取这个属性值。这个实例化属性也就是脚本代码中MaterialPropertyBlock传入的颜色值。

查看Unity Shader源代码,这四个用于实例化的宏封装的是一个cbuffer数组,cbuffer就是hlsl的常量缓冲区:

#define UNITY_INSTANCING_CBUFFER_SCOPE_BEGIN(name)  cbuffer name {
#define UNITY_INSTANCING_CBUFFER_SCOPE_END          }
#define UNITY_INSTANCING_BUFFER_START(buf)      UNITY_INSTANCING_CBUFFER_SCOPE_BEGIN(UnityInstancing_##buf) struct {
#define UNITY_INSTANCING_BUFFER_END(arr)        } arr##Array[UNITY_INSTANCED_ARRAY_SIZE]; UNITY_INSTANCING_CBUFFER_SCOPE_END
#define UNITY_DEFINE_INSTANCED_PROP(type, var)  type var;
#define UNITY_ACCESS_INSTANCED_PROP(arr, var)   arr##Array[unity_InstanceID].var

运行的结果如下:

可以看到除了纹理,每一个胶囊体还获取了随机赋予给材质的颜色,也就是我们设置的颜色成为了实例化属性数据。MaterialPropertyBlock主要由Graphics.DrawMesh和Renderer.SetPropertyBlock使用,在希望绘制具有相同材质,但属性略有不同的多个对象时可使用它。

个人认为使用MaterialPropertyBlock自动实例化性能比不上使用Graphics.DrawMeshInstancedIndirect(),但是它有个优点是实例化的要求没那么高,Graphics.DrawMeshInstancedIndirect()要求使用同一mesh,同一贴图;但是MaterialPropertyBlock没这个要求,只要是同一材质,任何属性不一样都可以用,在减少绘制批次的同时还能减少材质的个数。

3. 参考

  1. 《Unity3D学习笔记6——GPU实例化(1)》
  2. 《Unity3D学习笔记6——GPU实例化(2)》
  3. Creating shaders that support GPU instancing
  4. MaterialPropertyBlock

具体实现代码

分类: Unity3D

标签: Unity3D , 实例化


相关实践学习
部署Stable Diffusion玩转AI绘画(GPU云服务器)
本实验通过在ECS上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。
相关文章
|
3月前
|
监控 异构计算
Jetson 学习笔记(八):htop查看CPU占用情况和jtop监控CPU和GPU
在NVIDIA Jetson平台上使用htop和jtop工具来监控CPU、GPU和内存的使用情况,并提供了安装和使用这些工具的具体命令。
236 0
|
5月前
|
缓存 图形学
Unity3D学习笔记12——渲染纹理
Unity3D学习笔记12——渲染纹理
50 2
|
5月前
|
API C# 图形学
Unity3D学习笔记9——加载纹理
Unity3D学习笔记9——加载纹理
54 2
|
5月前
|
API 图形学 异构计算
Unity3D学习笔记7——GPU实例化(2)
Unity3D学习笔记7——GPU实例化(2)
38 2
|
5月前
|
存储 缓存 图形学
Unity3D学习笔记11——后处理
Unity3D学习笔记11——后处理
66 1
|
5月前
|
测试技术 C# 图形学
Unity3D学习笔记10——纹理数组
Unity3D学习笔记10——纹理数组
62 0
|
5月前
|
存储 API 图形学
Unity3D学习笔记6——GPU实例化(1)
Unity3D学习笔记6——GPU实例化(1)
79 0
|
5月前
|
API 图形学 索引
Unity3D学习笔记5——创建子Mesh
Unity3D学习笔记5——创建子Mesh
37 0
|
5月前
|
API C# 图形学
Unity3D学习笔记4——创建Mesh高级接口
Unity3D学习笔记4——创建Mesh高级接口
45 0
|
2月前
|
弹性计算 人工智能 Serverless
阿里云ACK One:注册集群云上节点池(CPU/GPU)自动弹性伸缩,助力企业业务高效扩展
在当今数字化时代,企业业务的快速增长对IT基础设施提出了更高要求。然而,传统IDC数据中心却在业务存在扩容慢、缩容难等问题。为此,阿里云推出ACK One注册集群架构,通过云上节点池(CPU/GPU)自动弹性伸缩等特性,为企业带来全新突破。