面向对象编程(C++篇2)——构造

简介: 面向对象编程(C++篇2)——构造

面向对象编程(C++篇2)——构造

目录

1. 引述

在C++中,学习类的第一课往往就是构造函数。根据构造函数的定义,构造函数式是用于初始化类对象的数据成员的。无论何时,只要类被创建,就会执行构造函数:

class ImageEx
{
public:
    ImageEx()
    {
        cout << "Execute the constructor!" << endl;
    }
};
int main()
{
    ImageEx imageEx;    
    return 0;
}

那么问题来了,为什么要有构造函数?

2. 详述

2.1. 数据类型初始化

正如上一篇文章《面向对象编程(C++篇1)——引言》中提到的那样:类是抽象的自定义数据类型。对于C++的内置数据类型,我们可以采用如下方式进行初始化:

double price = 109.99;

这种初始化行为很像赋值操作,但是初始化与赋值是两种概念:初始化的含义是创建变量的时候赋予其一个初始值,而赋值的含义则是把对象的当前值擦除,以一个新的值来代替。实际上,我们同样可以使用类似构造函数一样的方式初始化内置数据类型:

double price(109.99);

那么,我们在定义变量的时候不进行初始化会怎么样呢?答案是会进行默认初始化(其实不太准确,在某些情况下,会不被初始化,进而产生未定义的行为,是非常危险的):

double price;
price = 109.99;

在C++中,一个合理的原则是:变量类型定义时初始化。这个原则不仅可以避免未初始化可能产生的未定义行为,还节省了性能:避免定义(默认初始化)后再进行赋值操作。

2.2. 类初始化

可能你会认为,先定义(默认初始化)之后再进行赋值,对性能影响不大。这句话对于C#、Java、JavaScript这样的语言来说是成立的,它们的应用场景很多时候可以不用关心这个(性能场景则不一定)。而对于C++这样的面向底层的语言来说,追求的是"零成本抽象(zero overhead abstraction)"的设计原则,只是简单的数据结构影响当然不太,但是对于一个非常复杂的数据类型,则可能存在不可忽视的性能开销。

可以为一个类的数据成员提供一个类内初始值:

class ImageEx
{
    int imgWidth = 0;
    int imgHeight = 0;
    int bandCount = 0;
};

类的数据成员如果不进行初始化,那么就会如前所述,进行默认初始化:

class ImageEx
{
public:
    void Print()
    {
        cout << imgWidth << '\t' << imgHeight << '\t' << bandCount << endl;
        for (int i = 0; i < 10; i++)
        {
            printf("%d\t", data[i]);
        }
    }
private:
    int imgWidth;
    int imgHeight;
    int bandCount;
    unsigned char data[10];
};
int main()
{
    ImageEx imageEx;
    imageEx.Print();
    return 0;
}

运行结果:

默认初始化的未定义行为当然不是我们想要的,于是我们给他加一个初始化函数:

class ImageEx
{
public:
    void Init()
    {
        imgWidth = 200;
        imgHeight = 100;
        bandCount = 3;
        memset(data, 0, 10 * sizeof(unsigned char));
    }
    void Print()
    {
        cout << imgWidth << '\t' << imgHeight << '\t' << bandCount << endl;
        for (int i = 0; i < 10; i++)
        {
            printf("%d\t", data[i]);
        }
        cout << endl;
    }
private:
    int imgWidth;
    int imgHeight;
    int bandCount;
    unsigned char data[10];
};
int main()
{
    ImageEx imageEx;
    imageEx.Print();
    imageEx.Init();
    imageEx.Print();
    return 0;
}

运行结果:

从上例可以发现,如果我们自己给类的数据成员进行初始化函数,其实类的数据成员早就进行了一次默认初始化操作,这个初始化函数其实是一次额外的赋值。以这个类对象中的数组数据成员data为例,假使这个数组的容量很大,其额外的一次赋值操作对于底层来说,是不可忽略的性能开销。

那么使用构造函数的原因就很容易理解了,构造函数就是实现当类定义时初始化数据成员的,这样可以避免额外的初始化性能开销:

class ImageEx
{
public:
    ImageEx()
    {
        cout << "Default initialization!" << endl;
        Print();
        cout << "Execute the constructor!" << endl;
        Init();
    }
    void Print()
    {
        cout << imgWidth << '\t' << imgHeight << '\t' << bandCount << endl;
        for (int i = 0; i < 10; i++)
        {
            printf("%d\t", data[i]);
        }
        cout << endl;
    }
private:
    void Init()
    {
        imgWidth = 200;
        imgHeight = 100;
        bandCount = 3;
        memset(data, 0, 10 * sizeof(unsigned char));
    }
    int imgWidth;
    int imgHeight;
    int bandCount;
    unsigned char data[10];
};
int main()
{
    ImageEx imageEx;
    imageEx.Print();
    return 0;
}

进一步探究,构造函数本质是个函数,函数是由语句组成,已经定义的数据类型只能赋值初始化,而无法再进行构造。也就是说,在调用构造函数之前,数据成员还是已经默认初始化了:

因此,初始化最好的实现是使用构造函数的初始值列表:

class ImageEx
{
public:
    ImageEx() :
        imgWidth(200),
        imgHeight(100),
        bandCount(3),
        data{ 0, 1, 2 }
    {
        cout << "Execute the constructor!" << endl;
    }
    void Print()
    {
        cout << imgWidth << '\t' << imgHeight << '\t' << bandCount << endl;
        for (int i = 0; i < 10; i++)
        {
            printf("%d\t", data[i]);
        }
        cout << endl;
    }
private:
    int imgWidth;
    int imgHeight;
    int bandCount;
    unsigned char data[10];
};
int main()
{
    ImageEx imageEx;
    imageEx.Print();
    return 0;
}

运行结果:

通过这种实现,类中所有的数据成员都在定义时初始化,从而使类对象也实现了定义时初始化;避免了先定义后赋值的性能开销,体现了C++"零成本抽象(zero overhead abstraction)"的设计哲学。

上一篇

目录

下一篇

分类: C++

标签: C++ , 面向对象 , 构造函数


目录
打赏
0
0
0
0
18
分享
相关文章
Essential C++ 第5章 面向对象编程风格
Essential C++ 第5章 面向对象编程风格
|
6月前
|
C++
拥抱C++面向对象编程,解锁软件开发新境界!从混乱到有序,你的代码也能成为高效能战士!
【8月更文挑战第22天】C++凭借其强大的面向对象编程(OOP)能力,在构建复杂软件系统时不可或缺。OOP通过封装数据和操作这些数据的方法于对象中,提升了代码的模块化、重用性和可扩展性。非OOP方式(过程化编程)下,数据与处理逻辑分离,导致维护困难。而OOP将学生信息及其操作整合到`Student`类中,增强代码的可读性和可维护性。通过示例对比,可以看出OOP使C++代码结构更清晰,特别是在大型项目中,能有效提高开发效率和软件质量。
51 1
面向对象编程(C++篇3)——析构
面向对象编程(C++篇3)——析构
47 2
面向对象编程(C++篇4)——RAII
面向对象编程(C++篇4)——RAII
50 0
面向对象编程(C++篇1)——引言
面向对象编程(C++篇1)——引言
36 0
从C语言到C++_33(C++11_上)initializer_list+右值引用+完美转发+移动构造/赋值(中)
从C语言到C++_33(C++11_上)initializer_list+右值引用+完美转发+移动构造/赋值
58 1
从C语言到C++_33(C++11_上)initializer_list+右值引用+完美转发+移动构造/赋值(中)
|
8月前
|
C++之deque容器(构造、赋值、大小、插入与删除、存取、排序)
C++之deque容器(构造、赋值、大小、插入与删除、存取、排序)
|
8月前
|
C++字符串string容器(构造、赋值、拼接、查找、替换、比较、存取、插入、删除、子串)
C++字符串string容器(构造、赋值、拼接、查找、替换、比较、存取、插入、删除、子串)
107 1
从C语言到C++_33(C++11_上)initializer_list+右值引用+完美转发+移动构造/赋值(上)
从C语言到C++_33(C++11_上)initializer_list+右值引用+完美转发+移动构造/赋值
49 2
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等