我是如何把python获取到的数据写入Excel的?

简介: 我是如何把python获取到的数据写入Excel的?

如何将获取的数据写入Excel,这一点我在文章几乎都是采用这种方式来进行操作的

写入Excel的目的是为了后续更加方便的使用pandas对数据进行清洗、筛选、过滤等操作。

为进一步数据研究、可视化打基础。

1. 自定义写入Excel

python写入Excel的方式有很多,常用的支持python操作的库有

xlsxwriterpandas、openpyxl

今天咱们只介绍我常用到的openpyxl

1. 创建workbook

2.创建worsheet

3.数据写入sheet

4.数据写入sheet

5.保存到excel

既然说到数据写入Excel。那我们直接上案例

网页的分析和数据的爬取我们可以参考:

Python实战|腾讯招聘你干什么?python可视化告诉你

如图我们现在已经成功的将数据打印出来了,接下来我们考虑的就是如何将这些数据保存到Excel中。

前面说到我们这里使用的Python库是openpyxl来实现这一操作。

所以第一步

openpyxl的下载

或者自行下载whl文件安装

https://www.lfd.uci.edu/~gohlke/pythonlibs/

导入库

使用import导入openpyxl库,为后续方便调用,

可以使用as关键字来简写库名

import openpyxl as op

1. 创建workbook

ws = op.Workbook()

2.创建worsheet

wb = ws.create_sheet(index=0)

3. 头文件

    wb.cell(row=1, column=1, value='职位名称')
    wb.cell(row=1, column=2, value='国家')
    wb.cell(row=1, column=3, value='城市')
    wb.cell(row=1, column=4, value='职位分类')
    wb.cell(row=1, column=5, value='职位更新时间')
    wb.cell(row=1, column=6, value='职位要求')

3.数据写入sheet

      # 加入count是为了换行写入数据
      count = 2 
      
      # 要写入excel的数据
      post_name = job['RecruitPostName']  # 职位名称
      country_name = job['CountryName']  # 国家
      loc_name = job['LocationName']  # 城市
      category_name = job['CategoryName']  # 职位分类
      last_up_time = job['LastUpdateTime']  # 职位更新时间
      responsibility = job['Responsibility']  # 职位要求
      
      # 打印获取到的数据
      print(post_name, country_name, loc_name, category_name, last_up_time, responsibility)
      
      # 将数据写入到下一行
      wb.cell(row=count, column=1, value=post_name)
      wb.cell(row=count, column=2, value=country_name)
      wb.cell(row=count, column=3, value=loc_name)
      wb.cell(row=count, column=4, value=category_name)
      wb.cell(row=count, column=5, value=last_up_time)
      wb.cell(row=count, column=6, value=responsibility)
      
      # count加1,进入到下一行写入数据
      count += 1

4.保存excel

  # 保存数据
  ws.save('腾讯职位.xlsx')

四步走轻松将你的数据写入到Excel

还有更多的表头、边框、颜色设置等在此不再赘述哈

有需要的可自行百度哈。

2. 函数式写入Excel

import openpyxl as op
 
id = [1, 2, 3]
name = ['张三', '李四', '王五']
age = [21, 20, 122]
address = ['北京', '上海', '广州']
infos = [id, name, age, address]
 
 
def op_toexcel(data): # openpyxl库储存数据到excel
    wb = op.Workbook() # 创建工作簿对象
    ws = wb['Sheet'] # 创建子表
    ws.append(['序号', '姓名', '年龄', '住址']) # 添加表头
    for i in range(len(data[0])):
        d = data[0][i], data[1][i], data[2][i], data[3][i]
        ws.append(d) # 每次写入一行
    wb.save('测试.xlsx')

3. pandas写入Excel

id = [1, 2, 3]
name = ['张三', '李四', '王五']
age = [21, 20, 122]
address = ['北京', '上海', '广州']
infos = [id, name, age, address]
 
# pandas库储存数据到excel
def pd_toexcel(data):
    # 用字典设置DataFrame所需数据
    dfData = {
        '序号': data[0],
        '姓名': data[1],
        '年龄': data[2],
        '住址': data[3]
 
    }
    # 创建DataFrame
    df = pd.DataFrame(dfData)
    # 存表,去除原始索引列(0,1,2...)
    df.to_excel('测试.xlsx', index=False)

如有不足之处,烦请大佬们不吝赐教。及时指正。一起进步!

相关文章
|
18天前
|
数据采集 数据可视化 数据挖掘
利用Python自动化处理Excel数据:从基础到进阶####
本文旨在为读者提供一个全面的指南,通过Python编程语言实现Excel数据的自动化处理。无论你是初学者还是有经验的开发者,本文都将帮助你掌握Pandas和openpyxl这两个强大的库,从而提升数据处理的效率和准确性。我们将从环境设置开始,逐步深入到数据读取、清洗、分析和可视化等各个环节,最终实现一个实际的自动化项目案例。 ####
|
17天前
|
数据采集 分布式计算 大数据
构建高效的数据管道:使用Python进行ETL任务
在数据驱动的世界中,高效地处理和移动数据是至关重要的。本文将引导你通过一个实际的Python ETL(提取、转换、加载)项目,从概念到实现。我们将探索如何设计一个灵活且可扩展的数据管道,确保数据的准确性和完整性。无论你是数据工程师、分析师还是任何对数据处理感兴趣的人,这篇文章都将成为你工具箱中的宝贵资源。
|
1月前
|
Java 测试技术 持续交付
【入门思路】基于Python+Unittest+Appium+Excel+BeautifulReport的App/移动端UI自动化测试框架搭建思路
本文重点讲解如何搭建App自动化测试框架的思路,而非完整源码。主要内容包括实现目的、框架设计、环境依赖和框架的主要组成部分。适用于初学者,旨在帮助其快速掌握App自动化测试的基本技能。文中详细介绍了从需求分析到技术栈选择,再到具体模块的封装与实现,包括登录、截图、日志、测试报告和邮件服务等。同时提供了运行效果的展示,便于理解和实践。
95 4
【入门思路】基于Python+Unittest+Appium+Excel+BeautifulReport的App/移动端UI自动化测试框架搭建思路
|
1月前
|
传感器 物联网 开发者
使用Python读取串行设备的温度数据
本文介绍了如何使用Python通过串行接口(如UART、RS-232或RS-485)读取温度传感器的数据。详细步骤包括硬件连接、安装`pyserial`库、配置串行端口、发送请求及解析响应等。适合嵌入式系统和物联网应用开发者参考。
45 3
|
15天前
|
机器学习/深度学习 前端开发 数据处理
利用Python将Excel快速转换成HTML
本文介绍如何使用Python将Excel文件快速转换成HTML格式,以便在网页上展示或进行进一步的数据处理。通过pandas库,你可以轻松读取Excel文件并将其转换为HTML表格,最后保存为HTML文件。文中提供了详细的代码示例和注意事项,帮助你顺利完成这一任务。
27 0
|
1月前
|
图形学 Python
SciPy 空间数据2
凸包(Convex Hull)是计算几何中的概念,指包含给定点集的所有凸集的交集。可以通过 `ConvexHull()` 方法创建凸包。示例代码展示了如何使用 `scipy` 库和 `matplotlib` 绘制给定点集的凸包。
28 1
|
1月前
|
JSON 数据格式 索引
Python中序列化/反序列化JSON格式的数据
【11月更文挑战第4天】本文介绍了 Python 中使用 `json` 模块进行序列化和反序列化的操作。序列化是指将 Python 对象(如字典、列表)转换为 JSON 字符串,主要使用 `json.dumps` 方法。示例包括基本的字典和列表序列化,以及自定义类的序列化。反序列化则是将 JSON 字符串转换回 Python 对象,使用 `json.loads` 方法。文中还提供了具体的代码示例,展示了如何处理不同类型的 Python 对象。
|
1月前
|
数据采集 JavaScript 程序员
探索CSDN博客数据:使用Python爬虫技术
本文介绍了如何利用Python的requests和pyquery库爬取CSDN博客数据,包括环境准备、代码解析及注意事项,适合初学者学习。
76 0
|
1月前
|
数据采集 存储 分布式计算
超酷炫Python技术:交通数据的多维度分析
超酷炫Python技术:交通数据的多维度分析
|
1月前
|
索引 Python
SciPy 空间数据1
SciPy 通过 `scipy.spatial` 模块处理空间数据,如判断点是否在边界内、计算最近点等。三角测量是通过测量角度来确定目标距离的方法。多边形的三角测量可将其分解为多个三角形,用于计算面积。Delaunay 三角剖分是一种常用方法,可以对一系列点进行三角剖分。示例代码展示了如何使用 `Delaunay()` 函数创建三角形并绘制。
34 0
下一篇
DataWorks