【Leetcode刷题Python】73. 矩阵置零

简介: 本文介绍了LeetCode第73题的解法,题目要求在给定矩阵中将所有值为0的元素所在的行和列全部置为0,并提供了一种原地算法的Python实现。

LeetCode 73. 矩阵置零

1 题目

给定一个 m x n 的矩阵,如果一个元素为 0 ,则将其所在行和列的所有元素都设为 0 。请使用 原地 算法。

示例 1:

img

输入:matrix = [[1,1,1],[1,0,1],[1,1,1]]
输出:[[1,0,1],[0,0,0],[1,0,1]]
示例 2:

输入:matrix = [[0,1,2,0],[3,4,5,2],[1,3,1,5]]
输出:[[0,0,0,0],[0,4,5,0],[0,3,1,0]]

提示:

m == matrix.length
n == matrix[0].length
1 <= m, n <= 200
-231 <= matrix[i][j] <= 231 - 1

来源:力扣(LeetCode)
链接:https://leetcode.cn/problems/set-matrix-zeroes
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

2 解析

先确定元素0 的位置,再根据位置,将每行和每列设置为0。

3 Python实现

class Solution:
    def setZeroes(self, matrix: List[List[int]]) -> None:
        """
        Do not return anything, modify matrix in-place instead.
        """
        temp = []
        for i in range(len(matrix)):
            for j in range(len(matrix[0])):
                if matrix[i][j]==0:
                    temp.append((i,j))
        for row,col in temp:
            matrix[row]=[0]*len(matrix[0])
            for i in range(len(matrix)):
                matrix[i][col] =0
目录
相关文章
|
5月前
|
机器学习/深度学习 数据可视化 数据挖掘
使用Python实现基于矩阵分解的长期事件(MFLEs)时间序列分析
在现代数据分析中,高维时间序列数据的处理和预测极具挑战性。基于矩阵分解的长期事件(MFLEs)分析技术应运而生,通过降维和时间序列特性结合,有效应对大规模数据。MFLE利用矩阵分解提取潜在特征,降低计算复杂度,过滤噪声,并发现主要模式。相比传统方法如ARIMA和深度学习模型如LSTM,MFLE在多变量处理、计算效率和可解释性上更具优势。通过合理应用MFLE,可在物联网、金融等领域获得良好分析效果。
196 0
使用Python实现基于矩阵分解的长期事件(MFLEs)时间序列分析
|
2月前
|
算法 Go
【LeetCode 热题100】73:矩阵置零(详细解析)(Go语言版)
这篇文章详细解析了力扣热题 73——矩阵置零问题,提供两种解法:一是使用额外标记数组,时间复杂度为 O(m * n),空间复杂度为 O(m + n);二是优化后的原地标记方法,利用矩阵的第一行和第一列记录需要置零的信息,将空间复杂度降低到 O(1)。文章通过清晰的代码示例与复杂度分析,帮助理解“原地操作”及空间优化技巧,并推荐相关练习题以巩固矩阵操作能力。适合刷题提升算法思维!
76 9
|
9月前
|
Unix Shell Linux
LeetCode刷题 Shell编程四则 | 194. 转置文件 192. 统计词频 193. 有效电话号码 195. 第十行
本文提供了几个Linux shell脚本编程问题的解决方案,包括转置文件内容、统计词频、验证有效电话号码和提取文件的第十行,每个问题都给出了至少一种实现方法。
126 6
LeetCode刷题 Shell编程四则 | 194. 转置文件 192. 统计词频 193. 有效电话号码 195. 第十行
|
10月前
|
存储 算法 NoSQL
LeetCode第73题矩阵置零
文章介绍了LeetCode第73题"矩阵置零"的解法,通过使用矩阵的第一行和第一列作为标记来记录哪些行或列需要置零,从而在不增加额外空间的情况下解决问题。
LeetCode第73题矩阵置零
|
10月前
|
Python
Python计算误码率,输入是0-1比特流矩阵和小数矩阵
本文提供了一个Python函数calculate_ber,用于计算两个NumPy矩阵表示的二进制信号和接收信号之间的误码率(BER),其中包括信号与接收信号的比较、误差计数以及BER的计算过程,并给出了具体的使用示例。
167 2
|
7月前
|
机器学习/深度学习 人工智能 自然语言处理
280页PDF,全方位评估OpenAI o1,Leetcode刷题准确率竟这么高
【10月更文挑战第24天】近年来,OpenAI的o1模型在大型语言模型(LLMs)中脱颖而出,展现出卓越的推理能力和知识整合能力。基于Transformer架构,o1模型采用了链式思维和强化学习等先进技术,显著提升了其在编程竞赛、医学影像报告生成、数学问题解决、自然语言推理和芯片设计等领域的表现。本文将全面评估o1模型的性能及其对AI研究和应用的潜在影响。
182 1
|
9月前
|
数据采集 负载均衡 安全
LeetCode刷题 多线程编程九则 | 1188. 设计有限阻塞队列 1242. 多线程网页爬虫 1279. 红绿灯路口
本文提供了多个多线程编程问题的解决方案,包括设计有限阻塞队列、多线程网页爬虫、红绿灯路口等,每个问题都给出了至少一种实现方法,涵盖了互斥锁、条件变量、信号量等线程同步机制的使用。
121 3
LeetCode刷题 多线程编程九则 | 1188. 设计有限阻塞队列 1242. 多线程网页爬虫 1279. 红绿灯路口
|
8月前
|
搜索推荐 Python
Leecode 101刷题笔记之第五章:和你一起你轻松刷题(Python)
这篇文章是关于LeetCode第101章的刷题笔记,涵盖了多种排序算法的Python实现和两个中等难度的编程练习题的解法。
77 3
|
8月前
|
机器学习/深度学习 并行计算 大数据
【Python篇】NumPy完整指南(上篇):掌握数组、矩阵与高效计算的核心技巧2
【Python篇】NumPy完整指南(上篇):掌握数组、矩阵与高效计算的核心技巧
258 10
|
8月前
|
索引 Python
【Python篇】NumPy完整指南(上篇):掌握数组、矩阵与高效计算的核心技巧1
【Python篇】NumPy完整指南(上篇):掌握数组、矩阵与高效计算的核心技巧
311 4

推荐镜像

更多