LangChain 库和 Fine-tuning 方法结合开发应用的一般步骤和示例代码。
示例代码:
from langchain import LangChain
from langchain.text_preprocessor import TextPreprocessor
from langchain.model_finetuner import ModelFineTuner
# 实例化 LangChain,假设它有预训练模型和 Fine-tuning 功能
langchain = LangChain()
# 数据预处理
preprocessor = TextPreprocessor()
X_train, y_train = preprocessor.preprocess_training_data(train_dataset)
# 加载预训练模型,假设 LangChain 提供了加载预训练模型的方法
pretrained_model = langchain.load_pretrained_model('bert-base-uncased')
# 配置 Fine-tuning
fine_tuner = ModelFineTuner(
model=pretrained_model,
learning_rate=2e-5,
epochs=3,
batch_size=16
)
# 训练模型
fine_tuner.train(X_train, y_train)
# 评估模型
evaluation_results = fine_tuner.evaluate(X_test, y_test)
print(evaluation_results)
# 保存模型
fine_tuner.save_model('fine_tuned_model')
# 加载模型并进行预测,假设 LangChain 提供了预测接口
loaded_model = langchain.load_model('fine_tuned_model')
predictions = loaded_model.predict(new_data)
# 应用集成逻辑
# ...