实时计算 Flink版产品使用问题之在从MySQL同步数据到Doris时,delete语句无法同步,是什么原因

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
简介: 实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。

问题一:Flink CDC里我是想自动做断点续传,比如我某个任务的容器crash了,我需要重启任务怎么办?

Flink CDC里我是想自动做断点续传,比如我某个任务的容器crash了,我需要重启任务,这个时候没法预知去手动savepoint,该如何处理呢?



参考答案:

如果是mysql的话最好是 自己指定下 最新的 log bin.文件的位置,让从指定 位置同步,目前 savepoint还不行。 建议你找个开发平台去做,你的checkpoint就需要持久化保存,然后去找最近一个成功的checkpoint点去启动。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/592315



问题二:Flink CDCOraclecdc JdbcIncrementalSource 为啥捕获不到数据?

Flink CDC里Oraclecdc JdbcIncrementalSource 捕获不到数据也不报错,什么情况,如何定位问题? Oracle日志也没报错怎么回事?



参考答案:

如果Flink CDC的Oraclecdc JdbcIncrementalSource捕获不到数据也不报错,可能是以下原因:

  1. 检查数据库连接是否正常,可以尝试使用其他工具连接数据库,确认连接是否成功。
  2. 检查JdbcIncrementalSource的配置是否正确,特别是表名和字段名是否正确。
  3. 检查Flink任务的并行度是否设置正确,如果并行度设置过高,可能会导致数据无法正常消费。
  4. 检查Flink任务的checkpoint是否配置正确,如果checkpoint配置不正确,可能会导致数据无法正常消费。
  5. 检查Oracle数据库的日志,查看是否有异常或错误信息。

如果以上方法都无法解决问题,可以联系Flink社区或Oracle技术支持寻求帮助。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/592314



问题三:Flink CDC里每次重新启动任务它都会新建的话如何保证断点续传呢?

Flink CDC里我的flink任务每次启动都会在我给的checkpoint目录下面用随机字符串建立子目录,这样我每次重新启动任务它都会新建的话如何保证断点续传呢? 我是通过FlinkDeployment部署到云上,启动的时候我尝试这样加过参数,但是貌似起不了作用,可能因为我这个目录是checkpoint自动生成的,不是我手动savepoint的?



参考答案:

checkpoint是系统做的,系统出错重试的时候,自己会去找checkpoint目录的检查点,默认是不持久化的

savepoint是手动做的,配合job的迭代使用。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/592313



问题四:Flink CDC里为什么我在用flinkcdc3同步mysql到doris的时候语句不同步?

Flink CDC里为什么我在用flinkcdc3同步mysql到doris的时候,delete语句无法同步呢?



参考答案:

在使用 Flink CDC (Continuous Data Capture) 从 MySQL 同步数据到 Doris 时,如果 delete 语句无法同步,可能的原因有以下几点:

  1. CDC Source端处理:
  • 不支持Delete事件捕获:早期版本的Flink CDC可能只支持插入(INSERT)和更新(UPDATE)事件的捕获,而不支持删除事件。但Flink CDC v2.x版本集成了Debezium等工具,理论上应该能够捕获MySQL的DELETE操作。
  1. 配置问题:
  • 确保在配置Flink CDC连接MySQL作为数据源时,启用了binlog格式为ROW,并且设置正确以捕获所有DML操作(包括DELETE)。
  1. Schema映射与转换:
  • 在将变更数据流转换并写入Doris之前,检查数据转换逻辑是否正确处理了DELETE事件。例如,如果只是简单地将变更事件应用到目标表,而没有实现对Doris的相应DELETE操作,那么删除事件就不会被正确反映。
  1. Doris Sink端处理:
  • Doris sink connector在接收到DELETE事件后,需要能够正确地执行相应的删除操作。确认所使用的Doris sink插件或者自定义的sink逻辑是否完整实现了对DELETE事件的支持。
  1. 事务和一致性保证:
  • 考虑到分布式系统的一致性问题,确保在Flink作业中的事务边界设置合理,能正确处理MySQL的删除事务。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/592407



问题五:Flink CDC里StarRocks是否支持oracle的外部表?怎么创建?添加到fe或be?

Flink CDC里StarRocks是否支持oracle的外部表?怎么创建?添加到fe嘛 还是be?



参考答案:

支持。

https://docs.starrocks.io/zh/docs/2.2/data_source/External_table/![f532f1949f0934c25277da1014167843.png](https://ucc.alicdn.com/pic/developer-ecology/cckkirpdqa7sk_0e602879498647bc9ebf712549d605ae.png)



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/592402

相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
Linux入门到精通
本套课程是从入门开始的Linux学习课程,适合初学者阅读。由浅入深案例丰富,通俗易懂。主要涉及基础的系统操作以及工作中常用的各种服务软件的应用、部署和优化。即使是零基础的学员,只要能够坚持把所有章节都学完,也一定会受益匪浅。
相关文章
|
29天前
|
存储 消息中间件 Kafka
基于 Flink 的中国电信星海时空数据多引擎实时改造
本文整理自中国电信集团大数据架构师李新虎老师在Flink Forward Asia 2024的分享,围绕星海时空智能系统展开,涵盖四个核心部分:时空数据现状、实时场景多引擎化、典型应用及未来展望。系统日处理8000亿条数据,具备亚米级定位能力,通过Flink多引擎架构解决数据膨胀与响应时效等问题,优化资源利用并提升计算效率。应用场景包括运动状态识别、个体行为分析和群智感知,未来将推进湖仓一体改造与三维时空服务体系建设,助力数字化转型与智慧城市建设。
354 3
基于 Flink 的中国电信星海时空数据多引擎实时改造
|
2月前
|
存储 缓存 数据挖掘
Flink + Doris 实时湖仓解决方案
本文整理自SelectDB技术副总裁陈明雨在Flink Forward Asia 2024的分享,聚焦Apache Doris与湖仓一体解决方案。内容涵盖三部分:一是介绍Apache Doris,一款高性能实时分析数据库,支持多场景应用;二是基于Doris、Flink和Paimon的湖仓解决方案,解决批流融合与数据一致性挑战;三是Doris社区生态及云原生发展,包括存算分离架构与600多位贡献者的活跃社区。文章深入探讨了Doris在性能、易用性及场景支持上的优势,并展示了其在多维分析、日志分析和湖仓分析中的实际应用案例。
224 17
Flink + Doris 实时湖仓解决方案
|
2月前
|
Oracle 关系型数据库 Java
【YashanDB知识库】Flink CDC实时同步Oracle数据到崖山
本文介绍通过Flink CDC实现Oracle数据实时同步至崖山数据库(YashanDB)的方法,支持全量与增量同步,并涵盖新增、修改和删除的DML操作。内容包括环境准备(如JDK、Flink版本等)、Oracle日志归档启用、用户权限配置、增量日志记录设置、元数据迁移、Flink安装与配置、生成Flink SQL文件、Streampark部署,以及创建和启动实时同步任务的具体步骤。适合需要跨数据库实时同步方案的技术人员参考。
【YashanDB知识库】Flink CDC实时同步Oracle数据到崖山
|
2月前
|
消息中间件 关系型数据库 Kafka
阿里云基于 Flink CDC 的现代数据栈云上实践
阿里云基于 Flink CDC 的现代数据栈云上实践
|
分布式计算 关系型数据库 MySQL
E-Mapreduce如何处理RDS的数据
目前网站的一些业务数据存在了数据库中,这些数据往往需要做进一步的分析,如:需要跟一些日志数据关联分析,或者需要进行一些如机器学习的分析。在阿里云上,目前E-Mapreduce可以满足这类进一步分析的需求。
5013 0
|
21天前
|
负载均衡 算法 关系型数据库
大数据大厂之MySQL数据库课程设计:揭秘MySQL集群架构负载均衡核心算法:从理论到Java代码实战,让你的数据库性能飙升!
本文聚焦 MySQL 集群架构中的负载均衡算法,阐述其重要性。详细介绍轮询、加权轮询、最少连接、加权最少连接、随机、源地址哈希等常用算法,分析各自优缺点及适用场景。并提供 Java 语言代码实现示例,助力直观理解。文章结构清晰,语言通俗易懂,对理解和应用负载均衡算法具有实用价值和参考价值。
大数据大厂之MySQL数据库课程设计:揭秘MySQL集群架构负载均衡核心算法:从理论到Java代码实战,让你的数据库性能飙升!
|
2月前
|
关系型数据库 MySQL Java
【YashanDB知识库】原生mysql驱动配置连接崖山数据库
【YashanDB知识库】原生mysql驱动配置连接崖山数据库
【YashanDB知识库】原生mysql驱动配置连接崖山数据库
|
21天前
|
存储 关系型数据库 MySQL
大数据新视界 --面向数据分析师的大数据大厂之 MySQL 基础秘籍:轻松创建数据库与表,踏入大数据殿堂
本文详细介绍了在 MySQL 中创建数据库和表的方法。包括安装 MySQL、用命令行和图形化工具创建数据库、选择数据库、创建表(含数据类型介绍与选择建议、案例分析、最佳实践与注意事项)以及查看数据库和表的内容。文章专业、严谨且具可操作性,对数据管理有实际帮助。
大数据新视界 --面向数据分析师的大数据大厂之 MySQL 基础秘籍:轻松创建数据库与表,踏入大数据殿堂
|
10天前
|
SQL 关系型数据库 MySQL
MySQL下载安装全攻略!小白也能轻松上手,从此数据库不再难搞!
这是一份详细的MySQL安装与配置教程,适合初学者快速上手。内容涵盖从下载到安装的每一步操作,包括选择版本、设置路径、配置端口及密码等。同时提供基础操作指南,如数据库管理、数据表增删改查、用户权限设置等。还介绍了备份恢复、图形化工具使用和性能优化技巧,帮助用户全面掌握MySQL的使用方法。附带常见问题解决方法,保姆级教学让你无忧入门!
MySQL下载安装全攻略!小白也能轻松上手,从此数据库不再难搞!
|
2天前
|
关系型数据库 MySQL 定位技术
MySQL与Clickhouse数据库:探讨日期和时间的加法运算。
这一次的冒险就到这儿,期待你的再次加入,我们一起在数据库的世界中找寻下一个宝藏。
21 9

相关产品

  • 实时计算 Flink版