Transformers 4.37 中文文档(三十九)(3)

简介: Transformers 4.37 中文文档(三十九)

Transformers 4.37 中文文档(三十九)(2)https://developer.aliyun.com/article/1564710


LED 特定的输出

class transformers.models.led.modeling_led.LEDEncoderBaseModelOutput

<来源>

( last_hidden_state: FloatTensor hidden_states: Optional = None attentions: Optional = None global_attentions: Optional = None )

参数

  • last_hidden_state(形状为(batch_size, sequence_length, hidden_size)torch.FloatTensor)— 模型最后一层的隐藏状态的序列。
  • hidden_statestuple(torch.FloatTensor)可选,当传递output_hidden_states=True或当config.output_hidden_states=True时返回)— 形状为(batch_size, sequence_length, hidden_size)torch.FloatTensor元组(一个用于嵌入的输出,一个用于每一层的输出)。
    模型在每一层输出的隐藏状态加上初始嵌入输出。
  • attentionstuple(torch.FloatTensor)可选,当传递output_attentions=True或当config.output_attentions=True时返回)— 形状为(batch_size, num_heads, sequence_length, x + attention_window + 1)torch.FloatTensor元组(每层一个),其中x是具有全局注意力掩码的标记数。在注意力 softmax 之后的局部注意力权重,用于计算自注意力头中的加权平均值。这些是从序列中的每个标记到具有全局注意力的每个标记(前x个值)和到注意力窗口中的每个标记(剩余attention_window个值)的注意力权重
  • 1values)。注意,前x个值是指文本中固定位置的标记,但剩余的attention_window + 1个值是指相对位置的标记:一个标记到自身的注意力权重位于索引x + attention_window / 2,前(后)attention_window / 2个值是指到前(后)attention_window / 2个标记的注意力权重。如果注意力窗口包含一个具有全局注意力的标记,相应索引处的注意力权重设置为 0;值应该从前x个注意力权重中访问。如果一个标记具有全局注意力,那么attentions中所有其他标记的注意力权重都设置为 0,值应该从global_attentions`中访问。
  • global_attentions (tuple(torch.FloatTensor)可选,当传递output_attentions=Trueconfig.output_attentions=True时返回) — 形状为(batch_size, num_heads, sequence_length, x)torch.FloatTensor元组(每层一个),其中x是具有全局注意力掩码的令牌数。
    注意力 softmax 之后的全局注意力权重,用于计算自注意力头中的加权平均值。这些是每个令牌与序列中每个令牌的全局注意力的注意力权重。

LEDEncoder 输出的基类,具有潜在的隐藏状态、局部和全局注意力。

class transformers.models.led.modeling_led.LEDSeq2SeqModelOutput

<来源>

( last_hidden_state: FloatTensor = None past_key_values: Optional = None decoder_hidden_states: Optional = None decoder_attentions: Optional = None cross_attentions: Optional = None encoder_last_hidden_state: Optional = None encoder_hidden_states: Optional = None encoder_attentions: Optional = None encoder_global_attentions: Optional = None )

参数

  • last_hidden_state (torch.FloatTensor,形状为(batch_size, sequence_length, hidden_size)) — 模型解码器最后一层的隐藏状态序列输出。
    如果使用past_key_values,则仅输出形状为(batch_size, 1, hidden_size)的序列的最后隐藏状态。
  • past_key_values (List[torch.FloatTensor]可选,当传递use_cache=Trueconfig.use_cache=True时返回) — 长度为config.n_layerstorch.FloatTensor列表,每个张量的形状为(2, batch_size, num_heads, sequence_length, embed_size_per_head)
    包含解码器的预计算隐藏状态(注意力块中的键和值),可用于加速顺序解码。
  • decoder_hidden_states (tuple(torch.FloatTensor)可选,当传递output_hidden_states=Trueconfig.output_hidden_states=True时返回) — 形状为(batch_size, sequence_length, hidden_size)torch.FloatTensor元组(一个用于嵌入的输出 + 一个用于每层的输出)。
    每层解码器的隐藏状态加上初始嵌入输出。
  • decoder_attentions (tuple(torch.FloatTensor)可选,当传递output_attentions=Trueconfig.output_attentions=True时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)torch.FloatTensor元组(每层一个)。
    解码器的注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均值。
  • cross_attentions (tuple(torch.FloatTensor)可选,当传递output_attentions=Trueconfig.output_attentions=True时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)torch.FloatTensor元组(每层一个)。
    解码器的交叉注意力层的注意力权重,在注意力 softmax 之后,用于计算交叉注意力头中的加权平均值。
  • encoder_last_hidden_state (torch.FloatTensor,形状为(batch_size, sequence_length, hidden_size)可选) — 模型编码器最后一层的隐藏状态序列输出。
  • encoder_hidden_states (tuple(torch.FloatTensor)可选,当传递output_hidden_states=Trueconfig.output_hidden_states=True时返回) — 形状为(batch_size, sequence_length, hidden_size)torch.FloatTensor元组(一个用于嵌入的输出 + 一个用于每层的输出)。
    每层解码器的隐藏状态加上初始嵌入输出。
  • encoder_attentions (tuple(torch.FloatTensor)可选,当传递output_attentions=Trueconfig.output_attentions=True时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)torch.FloatTensor元组(每层一个)。
    编码器的注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均值。
  • encoder_global_attentionstuple(torch.FloatTensor)可选,当传递output_attentions=True或当config.output_attentions=True时返回)- 形状为(batch_size, num_heads, sequence_length, x)torch.FloatTensor元组,其中x是具有全局注意力掩码的令牌数。
    在注意力 softmax 之后的全局注意力权重,用于计算自注意力头中的加权平均值。这些是每个令牌对序列中每个令牌的全局注意力的注意力权重。

模型编码器输出的基类,还包含:可加速顺序解码的预计算隐藏状态。

class transformers.models.led.modeling_led.LEDSeq2SeqLMOutput

<来源>

( loss: Optional = None logits: FloatTensor = None past_key_values: Optional = None decoder_hidden_states: Optional = None decoder_attentions: Optional = None cross_attentions: Optional = None encoder_last_hidden_state: Optional = None encoder_hidden_states: Optional = None encoder_attentions: Optional = None encoder_global_attentions: Optional = None )

参数

  • loss(形状为(1,)torch.FloatTensor可选,当提供labels时返回)- 语言建模损失。
  • logits(形状为(batch_size, sequence_length, config.vocab_size)torch.FloatTensor)- 语言建模头的预测分数(SoftMax 之前每个词汇标记的分数)。
  • past_key_valuesList[torch.FloatTensor]可选,当传递use_cache=True或当config.use_cache=True时返回)- 长度为config.n_layerstorch.FloatTensor列表,每个张量形状为(2, batch_size, num_heads, sequence_length, embed_size_per_head)
    包含解码器的预计算隐藏状态(注意力块中的键和值),可用于加速顺序解码(参见past_key_values输入)。
  • decoder_hidden_statestuple(torch.FloatTensor)可选,当传递output_hidden_states=True或当config.output_hidden_states=True时返回)- 形状为(batch_size, sequence_length, hidden_size)torch.FloatTensor元组。
    解码器在每一层输出的隐藏状态加上初始嵌入输出。
  • decoder_attentionstuple(torch.FloatTensor)可选,当传递output_attentions=True或当config.output_attentions=True时返回)- 形状为(batch_size, num_heads, sequence_length, sequence_length)torch.FloatTensor元组。
    解码器的注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均值。
  • cross_attentionstuple(torch.FloatTensor)可选,当传递output_attentions=True或当config.output_attentions=True时返回)- 形状为(batch_size, num_heads, sequence_length, sequence_length)torch.FloatTensor元组。
    解码器交叉注意力层的注意力权重,在注意力 softmax 之后,用于计算交叉注意力头中的加权平均值。
  • encoder_last_hidden_state(形状为(batch_size, sequence_length, hidden_size)torch.FloatTensor可选)- 模型编码器最后一层的隐藏状态序列。
  • encoder_hidden_statestuple(torch.FloatTensor)可选,当传递output_hidden_states=True或当config.output_hidden_states=True时返回)- 形状为(batch_size, sequence_length, hidden_size)torch.FloatTensor元组。
    编码器在每一层输出的隐藏状态加上初始嵌入输出。
  • encoder_attentionstuple(torch.FloatTensor)可选,当传递output_attentions=True或当config.output_attentions=True时返回)- 形状为(batch_size, num_heads, sequence_length, sequence_length)torch.FloatTensor元组。
    编码器的注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均值。
  • encoder_global_attentions (tuple(torch.FloatTensor), 可选, 当传递output_attentions=Trueconfig.output_attentions=True时返回) — 形状为(batch_size, num_heads, sequence_length, x)torch.FloatTensor元组(每层一个),其中x是具有全局注意力掩码的令牌数。
    在注意力 SoftMax 之后的全局注意力权重,用于计算自注意力头中的加权平均值。这些是来自每个具有全局注意力的令牌对序列中每个令牌的注意力权重。

用于序列到序列语言模型输出的基类。

class transformers.models.led.modeling_led.LEDSeq2SeqSequenceClassifierOutput

<来源>

( loss: Optional = None logits: FloatTensor = None past_key_values: Optional = None decoder_hidden_states: Optional = None decoder_attentions: Optional = None cross_attentions: Optional = None encoder_last_hidden_state: Optional = None encoder_hidden_states: Optional = None encoder_attentions: Optional = None encoder_global_attentions: Optional = None )

参数

  • loss (torch.FloatTensor,形状为(1,), 可选, 当提供label时返回) — 分类(如果config.num_labels==1则为回归)损失。
  • logits (torch.FloatTensor,形状为(batch_size, config.num_labels)) — SoftMax 之前的分类(如果config.num_labels==1则为回归)分数。
  • past_key_values (List[torch.FloatTensor], 可选, 当传递use_cache=Trueconfig.use_cache=True时返回) — 长度为config.n_layerstorch.FloatTensor列表,每个张量的形状为(2, batch_size, num_heads, sequence_length, embed_size_per_head)
    包含解码器的预计算隐藏状态(注意力块中的键和值),可用于加速顺序解码(参见past_key_values输入)。
  • decoder_hidden_states (tuple(torch.FloatTensor), 可选, 当传递output_hidden_states=Trueconfig.output_hidden_states=True时返回) — 形状为(batch_size, sequence_length, hidden_size)torch.FloatTensor元组(一个用于嵌入输出,一个用于每层输出)。
    每层解码器的隐藏状态以及初始嵌入输出。
  • decoder_attentions (tuple(torch.FloatTensor), 可选, 当传递output_attentions=Trueconfig.output_attentions=True时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)torch.FloatTensor元组(每层一个)。
    解码器的注意力权重,在注意力 SoftMax 之后,用于计算自注意力头中的加权平均值。
  • cross_attentions (tuple(torch.FloatTensor), 可选, 当传递output_attentions=Trueconfig.output_attentions=True时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)torch.FloatTensor元组(每层一个)。
    解码器交叉注意力层的注意力权重,在注意力 SoftMax 之后,用于计算交叉注意力头中的加权平均值。
  • encoder_last_hidden_state (torch.FloatTensor,形状为(batch_size, sequence_length, hidden_size)可选) — 模型编码器最后一层的隐藏状态序列。
  • encoder_hidden_states (tuple(torch.FloatTensor), 可选, 当传递output_hidden_states=Trueconfig.output_hidden_states=True时返回) — 形状为(batch_size, sequence_length, hidden_size)torch.FloatTensor元组(一个用于嵌入输出,一个用于每层输出)。
    每层编码器的隐藏状态以及初始嵌入输出。
  • encoder_attentions (tuple(torch.FloatTensor), 可选, 当传递output_attentions=Trueconfig.output_attentions=True时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)torch.FloatTensor元组(每层一个)。
    编码器的注意力权重,在注意力 SoftMax 之后,用于计算自注意力头中的加权平均值。
  • encoder_global_attentions (tuple(torch.FloatTensor), optional, 当传递output_attentions=Trueconfig.output_attentions=True时返回) — 形状为(batch_size, num_heads, sequence_length, x)torch.FloatTensor元组,其中x是具有全局注意力掩码的令牌数量。
    全局注意力权重在注意力 softmax 之后,用于计算自注意力头中的加权平均值。这些是来自具有全局注意力的每个令牌到序列中每个令牌的注意力权重。

用于序列到序列句子分类模型输出的基类。

class transformers.models.led.modeling_led.LEDSeq2SeqQuestionAnsweringModelOutput

<来源>

( loss: Optional = None start_logits: FloatTensor = None end_logits: FloatTensor = None past_key_values: Optional = None decoder_hidden_states: Optional = None decoder_attentions: Optional = None cross_attentions: Optional = None encoder_last_hidden_state: Optional = None encoder_hidden_states: Optional = None encoder_attentions: Optional = None encoder_global_attentions: Optional = None )

参数

  • loss (torch.FloatTensor,形状为(1,)optional, 当提供labels时返回) — 总跨度提取损失是起始位置和结束位置的交叉熵之和。
  • start_logits (torch.FloatTensor,形状为(batch_size, sequence_length)) — 跨度起始分数(SoftMax 之前)。
  • end_logits (torch.FloatTensor,形状为(batch_size, sequence_length)) — 跨度结束分数(SoftMax 之前)。
  • past_key_values (List[torch.FloatTensor], optional, 当传递use_cache=Trueconfig.use_cache=True时返回) — 长度为config.n_layerstorch.FloatTensor列表,每个张量的形状为(2, batch_size, num_heads, sequence_length, embed_size_per_head)
    包含解码器的预计算隐藏状态(注意力块中的键和值),可用于加速顺序解码(参见past_key_values输入)。
  • decoder_hidden_states (tuple(torch.FloatTensor), optional, 当传递output_hidden_states=Trueconfig.output_hidden_states=True时返回) — 形状为(batch_size, sequence_length, hidden_size)torch.FloatTensor元组。
    解码器在每一层输出的隐藏状态加上初始嵌入输出。
  • decoder_attentions (tuple(torch.FloatTensor), optional, 当传递output_attentions=Trueconfig.output_attentions=True时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)torch.FloatTensor元组。
    解码器的注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均值。
  • cross_attentions (tuple(torch.FloatTensor), optional, 当传递output_attentions=Trueconfig.output_attentions=True时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)torch.FloatTensor元组。
    解码器的交叉注意力层的注意力权重,在注意力 softmax 之后,用于计算交叉注意力头中的加权平均值。
  • encoder_last_hidden_state (torch.FloatTensor,形状为(batch_size, sequence_length, hidden_size)optional) — 模型编码器最后一层的隐藏状态序列。
  • encoder_hidden_states (tuple(torch.FloatTensor), optional, 当传递output_hidden_states=Trueconfig.output_hidden_states=True时返回) — 形状为(batch_size, sequence_length, hidden_size)torch.FloatTensor元组。
    编码器在每一层输出的隐藏状态加上初始嵌入输出。
  • encoder_attentions (tuple(torch.FloatTensor), optional, 当传递output_attentions=Trueconfig.output_attentions=True时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)torch.FloatTensor元组。
    编码器的注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均值。
  • encoder_global_attentions (tuple(torch.FloatTensor), 可选的, 当传递 output_attentions=True 或者当 config.output_attentions=True 时返回) — 形状为 (batch_size, num_heads, sequence_length, x)torch.FloatTensor 元组(每层一个),其中 x 是具有全局注意力掩码的令牌数量。
    在注意力 softmax 后的全局注意力权重,用于计算自注意力头中的加权平均值。这些是从具有全局注意力的每个令牌到序列中的每个令牌的注意力权重。

用于序列到序列问答模型输出的基类。

class transformers.models.led.modeling_tf_led.TFLEDEncoderBaseModelOutput

<来源>

( last_hidden_state: tf.Tensor = None hidden_states: Tuple[tf.Tensor] | None = None attentions: Tuple[tf.Tensor] | None = None global_attentions: Tuple[tf.Tensor] | None = None )

参数

  • last_hidden_state (tf.Tensor,形状为 (batch_size, sequence_length, hidden_size)) — 模型最后一层的隐藏状态序列。
  • hidden_states (tuple(tf.Tensor)可选的,当传递 output_hidden_states=True 或者当 config.output_hidden_states=True 时返回) — 形状为 (batch_size, sequence_length, hidden_size)tf.Tensor 元组(一个用于嵌入的输出 + 一个用于每一层的输出)。
    模型在每一层输出的隐藏状态以及初始嵌入输出。
  • attentions (tuple(tf.Tensor)可选的,当传递 output_attentions=True 或者当 config.output_attentions=True 时返回) — 形状为 (batch_size, num_heads, sequence_length, x + attention_window + 1)tf.Tensor 元组(每层一个),其中 x 是具有全局注意力掩码的令牌数量。在注意力 softmax 后的局部注意力权重,用于计算自注意力头中的加权平均值。这些是从序列中的每个令牌到具有全局注意力的每个令牌(前 x 个值)以及到注意力窗口中的每个令牌(剩余的 attention_window)的注意力权重。
  • 注意:前 x 个值指的是文本中具有固定位置的令牌,但剩余的 attention_window + 1 个值指的是具有相对位置的令牌:一个令牌到自身的注意力权重位于索引 x + attention_window / 2,前(后)的 attention_window / 2 个值是到前(后)的令牌的注意力权重。如果注意力窗口包含具有全局注意力的令牌,则相应索引处的注意力权重设置为 0;该值应从前 x 个注意力权重中获取。如果一个令牌具有全局注意力,则到attentions中的所有其他令牌的注意力权重设置为 0,应从global_attentions中获取值。
  • global_attentions (tuple(tf.Tensor)可选的,当传递 output_attentions=True 或者当 config.output_attentions=True 时返回) — 形状为 (batch_size, num_heads, sequence_length, x)tf.Tensor 元组(每层一个),其中 x 是具有全局注意力掩码的令牌数量。
    在注意力 softmax 后的全局注意力权重,用于计算自注意力头中的加权平均值。这些是从具有全局注意力的每个令牌到序列中的每个令牌的注意力权重。

Longformer 输出的基类,具有潜在的隐藏状态、局部和全局注意力。

class transformers.models.led.modeling_tf_led.TFLEDSeq2SeqModelOutput

<来源>

( last_hidden_state: tf.Tensor = None past_key_values: List[tf.Tensor] | None = None decoder_hidden_states: Tuple[tf.Tensor] | None = None decoder_attentions: Tuple[tf.Tensor] | None = None cross_attentions: Tuple[tf.Tensor] | None = None encoder_last_hidden_state: tf.Tensor | None = None encoder_hidden_states: Tuple[tf.Tensor] | None = None encoder_attentions: Tuple[tf.Tensor] | None = None encoder_global_attentions: Tuple[tf.Tensor] | None = None )

参数

  • last_hidden_state (tf.Tensor,形状为 (batch_size, sequence_length, hidden_size)) — 解码器模型最后一层的隐藏状态序列。
    如果使用 past_key_values,则仅输出形状为 (batch_size, 1, hidden_size) 的序列的最后一个隐藏状态。
  • past_key_valuesList[tf.Tensor]可选,当传递use_cache=Trueconfig.use_cache=True时返回)- 长度为config.n_layerstf.Tensor列表,每个张量的形状为(2, batch_size, num_heads, sequence_length, embed_size_per_head)
    包含解码器的预计算隐藏状态(注意力块中的键和值),可用于加速顺序解码。
  • decoder_hidden_statestuple(tf.Tensor)可选,当传递output_hidden_states=Trueconfig.output_hidden_states=True时返回)- 形状为(batch_size, sequence_length, hidden_size)tf.Tensor元组(一个用于嵌入输出,一个用于每层输出)。
    每层解码器的隐藏状态加上初始嵌入输出。
  • decoder_attentionstuple(tf.Tensor)可选,当传递output_attentions=Trueconfig.output_attentions=True时返回)- 形状为(batch_size, num_heads, sequence_length, sequence_length)tf.Tensor元组(每层一个)。
    解码器的注意力权重,在注意力 SoftMax 之后,用于计算自注意力头中的加权平均值。
  • cross_attentionstuple(tf.Tensor)可选,当传递output_attentions=Trueconfig.output_attentions=True时返回)- 形状为(batch_size, num_heads, sequence_length, sequence_length)tf.Tensor元组(每层一个)。
    解码器的交叉注意力层的注意力权重,在注意力 SoftMax 之后,用于计算交叉注意力头中的加权平均值。
  • encoder_last_hidden_state(形状为(batch_size, sequence_length, hidden_size)tf.Tensor可选)- 模型编码器最后一层的隐藏状态序列。
  • encoder_hidden_statestuple(tf.Tensor)可选,当传递output_hidden_states=Trueconfig.output_hidden_states=True时返回)- 形状为(batch_size, sequence_length, hidden_size)tf.Tensor元组(一个用于嵌入输出,一个用于每层输出)。
    每层编码器的隐藏状态加上初始嵌入输出。
  • encoder_attentionstuple(tf.Tensor)可选,当传递output_attentions=Trueconfig.output_attentions=True时返回)- 形状为(batch_size, num_heads, sequence_length, sequence_length)tf.Tensor元组(每层一个)。
    编码器的注意力权重,在注意力 SoftMax 之后,用于计算自注意力头中的加权平均值。
  • encoder_global_attentionstuple(tf.Tensor)可选,当传递output_attentions=Trueconfig.output_attentions=True时返回)- 形状为(batch_size, num_heads, sequence_length, x)tf.Tensor元组(每层一个),其中x是具有全局注意力掩码的令牌数。
    在注意力 SoftMax 之后的全局注意力权重,用于计算自注意力头中的加权平均值。这些是每个具有全局注意力的令牌对序列中每个令牌的注意力权重。

模型编码器输出的基类,还包含:可加速顺序解码的预计算隐藏状态。

class transformers.models.led.modeling_tf_led.TFLEDSeq2SeqLMOutput

<来源>

( loss: tf.Tensor | None = None logits: tf.Tensor = None past_key_values: List[tf.Tensor] | None = None decoder_hidden_states: Tuple[tf.Tensor] | None = None decoder_attentions: Tuple[tf.Tensor] | None = None cross_attentions: Tuple[tf.Tensor] | None = None encoder_last_hidden_state: tf.Tensor | None = None encoder_hidden_states: Tuple[tf.Tensor] | None = None encoder_attentions: Tuple[tf.Tensor] | None = None encoder_global_attentions: Tuple[tf.Tensor] | None = None )

参数

  • loss(形状为(1,)tf.Tensor可选,当提供labels时返回)- 语言建模损失。
  • logits(形状为(batch_size, sequence_length, config.vocab_size)tf.Tensor)- 语言建模头的预测分数(SoftMax 之前每个词汇标记的分数)。
  • past_key_values (List[tf.Tensor], optional, 当传递use_cache=Trueconfig.use_cache=True时返回) — 长度为config.n_layerstf.Tensor列表,每个张量的形状为(2, batch_size, num_heads, sequence_length, embed_size_per_head)
    包含解码器的预计算隐藏状态(注意力块中的键和值),可用于加速顺序解码(参见past_key_values输入)。
  • decoder_hidden_states (tuple(tf.Tensor), optional, 当传递output_hidden_states=Trueconfig.output_hidden_states=True时返回) — 形状为(batch_size, sequence_length, hidden_size)tf.Tensor元组(一个用于嵌入的输出 + 一个用于每个层的输出)。
    解码器在每个层输出的隐藏状态加上初始嵌入输出。
  • decoder_attentions (tuple(tf.Tensor), optional, 当传递output_attentions=Trueconfig.output_attentions=True时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)tf.Tensor元组(每个层一个)。
    解码器的注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均值。
  • cross_attentions (tuple(tf.Tensor), optional, 当传递output_attentions=Trueconfig.output_attentions=True时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)tf.Tensor元组(每个层一个)。
    解码器交叉注意力层的注意力权重,在注意力 softmax 之后,用于计算交叉注意力头中的加权平均值。
  • encoder_last_hidden_state (tf.Tensor,形状为(batch_size, sequence_length, hidden_size)optional) — 模型编码器最后一层的隐藏状态序列。
  • encoder_hidden_states (tuple(tf.Tensor), optional, 当传递output_hidden_states=Trueconfig.output_hidden_states=True时返回) — 形状为(batch_size, sequence_length, hidden_size)tf.Tensor元组(一个用于嵌入的输出 + 一个用于每个层的输出)。
    编码器在每个层输出的隐藏状态加上初始嵌入输出。
  • encoder_attentions (tuple(tf.Tensor), optional, 当传递output_attentions=Trueconfig.output_attentions=True时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)tf.Tensor元组(每个层一个)。
    编码器的注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均值。
  • encoder_global_attentions (tuple(tf.Tensor), optional, 当传递output_attentions=Trueconfig.output_attentions=True时返回) — 形状为(batch_size, num_heads, sequence_length, x)tf.Tensor元组(每个层一个),其中x是具有全局注意力掩码的令牌数。
    全局注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均值。这些是来自每个令牌对整个序列中每个令牌的全局注意力权重。

用于序列到序列语言模型输出的基类。

PytorchHide Pytorch content

LEDModel

class transformers.LEDModel

< source >

( config: LEDConfig )

参数

  • config (LEDConfig) — 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只加载配置。查看 from_pretrained()方法以加载模型权重。

裸 LED 模型输出原始隐藏状态,没有特定的头部。该模型继承自 PreTrainedModel。请参阅超类文档,了解库为所有模型实现的通用方法(如下载或保存、调整输入嵌入、修剪头部等)。

该模型还是 PyTorch torch.nn.Module子类。将其用作常规 PyTorch 模块,并参考 PyTorch 文档以获取一般用法和行为。

forward

<来源>

( input_ids: Optional = None attention_mask: Optional = None decoder_input_ids: Optional = None decoder_attention_mask: Optional = None head_mask: Optional = None decoder_head_mask: Optional = None cross_attn_head_mask: Optional = None encoder_outputs: Optional = None global_attention_mask: Optional = None past_key_values: Optional = None inputs_embeds: Optional = None decoder_inputs_embeds: Optional = None use_cache: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.modeling_outputs.Seq2SeqModelOutput or tuple(torch.FloatTensor)

参数

  • input_ids(形状为(batch_size, sequence_length)torch.LongTensor)— 词汇表中输入序列标记的索引。默认情况下将忽略填充。
    可以使用 AutoTokenizer 来获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()。
    什么是输入 ID?
  • attention_mask(形状为(batch_size, sequence_length)torch.Tensor可选)— 用于避免在填充标记索引上执行注意力的掩码。掩码值选在[0, 1]之间:
  • 1 表示未被屏蔽的标记,
  • 0 表示被屏蔽的标记。
  • 什么是注意力掩码?
  • decoder_input_ids(形状为(batch_size, target_sequence_length)torch.LongTensor可选)— 词汇表中解码器输入序列标记的索引。
    可以使用LedTokenizer来获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()。
    什么是输入 ID?
    LED 使用eos_token_id作为decoder_input_ids生成的起始标记。如果使用past_key_values,则可以选择仅输入最后的decoder_input_ids(请参阅past_key_values)。
  • decoder_attention_mask(形状为(batch_size, target_sequence_length)torch.LongTensor可选)— 默认行为:生成一个忽略decoder_input_ids中填充标记的张量。因果掩码也将默认使用。
    如果要更改填充行为,应阅读modeling_led._prepare_decoder_inputs并根据需要进行修改。有关默认策略的更多信息,请参阅论文中的图表 1。
  • global_attention_mask(形状为(batch_size, sequence_length)torch.FloatTensor可选)—   用于决定每个标记的注意力,编码器的局部注意力或全局注意力。具有全局注意力的标记会关注所有其他标记,而所有其他标记也会关注它们。这对于任务特定的微调非常重要,因为它使模型在表示任务时更加灵活。例如,对于分类,应该给予全局注意力。对于问答,所有问题标记也应该具有全局注意力。有关更多详细信息,请参阅Longformer 论文。掩码值选在[0, 1]之间:
  • 0 表示局部注意力(滑动窗口注意力),
  • 1 表示全局注意力(关注所有其他标记的标记,所有其他标记也关注它们)。
  • head_mask(形状为(encoder_layers, encoder_attention_heads)torch.Tensor可选)— 用于使编码器中注意力模块的选定头部失效的掩码。掩码值选在[0, 1]之间:
  • 1 表示头部未被屏蔽,
  • 0 表示头部被masked
  • decoder_head_mask(形状为(decoder_layers, decoder_attention_heads)torch.Tensor可选)— 用于使解码器中注意力模块的选定头部失效的掩码。掩码值选定在[0, 1]中:
  • 1 表示头部未被masked
  • 0 表示头部被masked
  • cross_attn_head_mask(形状为(decoder_layers, decoder_attention_heads)torch.Tensor可选)— 用于使解码器中交叉注意力模块的选定头部失效的掩码。掩码值选定在[0, 1]中:
  • 1 表示头部未被masked
  • 0 表示头部被masked
  • encoder_outputstuple(tuple(torch.FloatTensor)可选)— 元组包括(last_hidden_state可选hidden_states可选attentionslast_hidden_state的形状为(batch_size, sequence_length, hidden_size)可选是编码器最后一层输出的隐藏状态序列。用于解码器的交叉注意力。
  • past_key_valuestuple(tuple(torch.FloatTensor))可选,当传递use_cache=Trueconfig.use_cache=True时返回)— 长度为config.n_layerstuple(torch.FloatTensor)的元组,每个元组有 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)的张量和 2 个额外的形状为(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)的张量。
    包含预先计算的隐藏状态(自注意力块和交叉注意力块中的键和值),可用于加速顺序解码(参见past_key_values输入)。
    如果使用了past_key_values,用户可以选择仅输入最后的decoder_input_ids(那些没有将它们的过去键值状态提供给此模型的)的形状为(batch_size, 1)的张量,而不是形状为(batch_size, sequence_length)的所有decoder_input_ids
  • inputs_embeds(形状为(batch_size, sequence_length, hidden_size)torch.FloatTensor可选)— 可选地,您可以选择直接传递嵌入表示而不是传递input_ids。如果您想要更多控制如何将input_ids索引转换为相关向量,而不是模型的内部嵌入查找矩阵,则这很有用。
  • decoder_inputs_embeds(形状为(batch_size, target_sequence_length, hidden_size)torch.FloatTensor可选)— 可选地,您可以选择直接传递嵌入表示而不是传递decoder_input_ids。如果使用了past_key_values,则只需输入最后的decoder_inputs_embeds(参见past_key_values)。如果您想要更多控制如何将decoder_input_ids索引转换为相关向量,而不是模型的内部嵌入查找矩阵,则这很有用。
    如果decoder_input_idsdecoder_inputs_embeds都未设置,则decoder_inputs_embedsinputs_embeds的值。
  • use_cachebool可选)— 如果设置为True,则返回past_key_values键值状态,并可用于加速解码(参见past_key_values)。
  • output_attentionsbool可选)— 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量下的attentions
  • output_hidden_statesbool可选)— 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
  • return_dictbool可选)— 是否返回一个 ModelOutput 而不是一个普通元组。

返回

transformers.modeling_outputs.Seq2SeqModelOutput 或tuple(torch.FloatTensor)

一个 transformers.modeling_outputs.Seq2SeqModelOutput 或一个torch.FloatTensor元组(如果传递return_dict=Falseconfig.return_dict=False时),包含根据配置(LEDConfig)和输入的不同元素。

  • last_hidden_state (torch.FloatTensor,形状为(batch_size, sequence_length, hidden_size)) — 模型解码器最后一层的隐藏状态序列。
    如果使用past_key_values,则只输出形状为(batch_size, 1, hidden_size)的序列的最后一个隐藏状态。
  • past_key_values (tuple(tuple(torch.FloatTensor))可选,当传递use_cache=Trueconfig.use_cache=True时返回) — 长度为config.n_layers的元组tuple(torch.FloatTensor),每个元组有 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)的张量和 2 个额外的形状为(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)的张量。
    包含预先计算的隐藏状态(自注意力块和交叉注意力块中的键和值),可用于加速顺序解码(参见past_key_values输入)。
  • decoder_hidden_states (tuple(torch.FloatTensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) — 解码器隐藏状态的元组,形状为(batch_size, sequence_length, hidden_size),其中包括嵌入层的输出和每个层的输出。
    解码器在每一层的输出的隐藏状态,以及可选的初始嵌入输出。
  • decoder_attentions (tuple(torch.FloatTensor)可选,当传递output_attentions=Trueconfig.output_attentions=True时返回) — 元组torch.FloatTensor(每层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
    解码器的注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均值。
  • cross_attentions (tuple(torch.FloatTensor)可选,当传递output_attentions=Trueconfig.output_attentions=True时返回) — 元组torch.FloatTensor(每层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
    解码器的交叉注意力层的注意力权重,在注意力 softmax 之后,用于计算交叉注意力头中的加权平均值。
  • encoder_last_hidden_state (torch.FloatTensor,形状为(batch_size, sequence_length, hidden_size)可选) — 模型编码器最后一层的隐藏状态序列。
  • encoder_hidden_states (tuple(torch.FloatTensor)可选,当传递output_hidden_states=Trueconfig.output_hidden_states=True时返回) — 元组torch.FloatTensor(如果模型有嵌入层,则为一个,每个层的输出为一个),形状为(batch_size, sequence_length, hidden_size)
    编码器在每一层的输出的隐藏状态,以及可选的初始嵌入输出。
  • encoder_attentions (tuple(torch.FloatTensor)可选,当传递output_attentions=Trueconfig.output_attentions=True时返回) — 元组torch.FloatTensor(每层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
    编码器的注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均值。

LEDModel 的前向方法,覆盖了__call__特殊方法。

虽然前向传递的步骤需要在此函数内定义,但应该在此之后调用Module实例,而不是在此处调用,因为前者会负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例:

>>> from transformers import AutoTokenizer, LEDModel
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("allenai/led-base-16384")
>>> model = LEDModel.from_pretrained("allenai/led-base-16384")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)
>>> last_hidden_states = outputs.last_hidden_state


Transformers 4.37 中文文档(三十九)(4)https://developer.aliyun.com/article/1564713

相关文章
|
4月前
|
自然语言处理 PyTorch 算法框架/工具
Transformers 4.37 中文文档(二十九)(3)
Transformers 4.37 中文文档(二十九)
40 2
|
4月前
|
存储 自然语言处理 PyTorch
Transformers 4.37 中文文档(三十九)(1)
Transformers 4.37 中文文档(三十九)
26 0
|
4月前
|
PyTorch 测试技术 TensorFlow
Transformers 4.37 中文文档(三十九)(5)
Transformers 4.37 中文文档(三十九)
24 0
|
4月前
|
机器学习/深度学习 存储 缓存
Transformers 4.37 中文文档(三十九)(2)
Transformers 4.37 中文文档(三十九)
32 0
|
4月前
|
PyTorch 算法框架/工具 索引
Transformers 4.37 中文文档(三十九)(4)
Transformers 4.37 中文文档(三十九)
22 0
|
4月前
|
PyTorch TensorFlow 算法框架/工具
Transformers 4.37 中文文档(三十七)(4)
Transformers 4.37 中文文档(三十七)
20 0
|
4月前
|
缓存 PyTorch 算法框架/工具
Transformers 4.37 中文文档(三十七)(2)
Transformers 4.37 中文文档(三十七)
29 0
|
4月前
|
PyTorch TensorFlow 算法框架/工具
Transformers 4.37 中文文档(三十七)(3)
Transformers 4.37 中文文档(三十七)
34 0
|
4月前
|
算法框架/工具 异构计算 索引
Transformers 4.37 中文文档(三十七)(5)
Transformers 4.37 中文文档(三十七)
26 0
|
4月前
|
存储 自然语言处理 PyTorch
Transformers 4.37 中文文档(三十七)(1)
Transformers 4.37 中文文档(三十七)
32 0