Java多线程编程与并发控制策略
今天,我想和大家分享一下Java多线程编程与并发控制策略的相关知识,希望对大家有所帮助。
一、Java多线程编程基础
1.1 线程的创建与启动
在Java中,线程可以通过继承Thread
类或实现Runnable
接口来创建和启动。
// 继承Thread类 class MyThread extends Thread { public void run() { System.out.println("Thread is running"); } } // 实现Runnable接口 class MyRunnable implements Runnable { public void run() { System.out.println("Runnable is running"); } } public class Main { public static void main(String[] args) { MyThread thread1 = new MyThread(); thread1.start(); Thread thread2 = new Thread(new MyRunnable()); thread2.start(); } }
1.2 线程的生命周期
线程在Java中的生命周期包括以下几个阶段:
- 新建(New):线程对象被创建,但尚未调用
start()
方法。 - 就绪(Runnable):
start()
方法被调用,线程进入就绪状态,等待CPU调度。 - 运行(Running):线程获得CPU资源,开始执行
run()
方法。 - 阻塞(Blocked):线程因某些原因(如等待I/O操作)进入阻塞状态。
- 终止(Terminated):线程执行完
run()
方法或因异常退出。
二、并发控制策略
2.1 同步(Synchronized)
Synchronized
关键字用于保证多个线程访问共享资源时的互斥性,防止数据不一致问题。
class Counter { private int count = 0; public synchronized void increment() { count++; } public synchronized int getCount() { return count; } } public class Main { public static void main(String[] args) { Counter counter = new Counter(); Thread t1 = new Thread(() -> { for (int i = 0; i < 1000; i++) { counter.increment(); } }); Thread t2 = new Thread(() -> { for (int i = 0; i < 1000; i++) { counter.increment(); } }); t1.start(); t2.start(); try { t1.join(); t2.join(); } catch (InterruptedException e) { e.printStackTrace(); } System.out.println("Count: " + counter.getCount()); } }
2.2 显式锁(Explicit Lock)
ReentrantLock
是Java中的显式锁,提供了比Synchronized
更灵活的锁机制。
import java.util.concurrent.locks.ReentrantLock; class Counter { private int count = 0; private final ReentrantLock lock = new ReentrantLock(); public void increment() { lock.lock(); try { count++; } finally { lock.unlock(); } } public int getCount() { lock.lock(); try { return count; } finally { lock.unlock(); } } }
2.3 信号量(Semaphore)
Semaphore
用于控制同时访问某个特定资源的线程数量。
import java.util.concurrent.Semaphore; class Resource { private final Semaphore semaphore = new Semaphore(3); public void use() { try { semaphore.acquire(); System.out.println("Resource in use by " + Thread.currentThread().getName()); Thread.sleep(1000); } catch (InterruptedException e) { e.printStackTrace(); } finally { semaphore.release(); } } } public class Main { public static void main(String[] args) { Resource resource = new Resource(); for (int i = 0; i < 10; i++) { new Thread(resource::use).start(); } } }
2.4 读写锁(ReadWriteLock)
ReadWriteLock
允许多个读操作同时进行,但写操作独占。
import java.util.concurrent.locks.ReentrantReadWriteLock; class SharedData { private int data = 0; private final ReentrantReadWriteLock rwLock = new ReentrantReadWriteLock(); public void write(int value) { rwLock.writeLock().lock(); try { data = value; } finally { rwLock.writeLock().unlock(); } } public int read() { rwLock.readLock().lock(); try { return data; } finally { rwLock.readLock().unlock(); } } }
三、并发工具类
3.1 CountDownLatch
CountDownLatch
用于让一个或多个线程等待其他线程完成操作。
import java.util.concurrent.CountDownLatch; public class Main { public static void main(String[] args) { CountDownLatch latch = new CountDownLatch(3); for (int i = 0; i < 3; i++) { new Thread(() -> { System.out.println(Thread.currentThread().getName() + " is working"); latch.countDown(); }).start(); } try { latch.await(); } catch (InterruptedException e) { e.printStackTrace(); } System.out.println("All threads have finished"); } }
3.2 CyclicBarrier
CyclicBarrier
用于让一组线程等待至某个状态,然后同时执行。
import java.util.concurrent.CyclicBarrier; public class Main { public static void main(String[] args) { CyclicBarrier barrier = new CyclicBarrier(3, () -> System.out.println("All threads have reached the barrier")); for (int i = 0; i < 3; i++) { new Thread(() -> { System.out.println(Thread.currentThread().getName() + " is working"); try { barrier.await(); } catch (Exception e) { e.printStackTrace(); } }).start(); } } }
总结
Java多线程编程与并发控制是一个复杂而重要的领域。在实际开发中,我们需要根据具体需求选择合适的并发控制策略,确保程序的正确性和性能。通过学习和掌握这些技巧,我们可以更好地应对多线程编程中的各种挑战,为用户提供高效、可靠的应用程序。