一些简单却精妙的算法

简介: 一些简单却精妙的算法


在编程的世界里,简洁的代码往往隐藏着深邃的智慧。一起来看看那些看似简单,实则精妙绝伦的代码片段,体会编程语言的优雅与力量。

1.树状数组

int lowbit(int x)  
{    
    return x&-x;    
}

树状数组里的这个,太精妙了,树状数组使区间求和复杂度降低到了log(n),发明这段代码的人一定是个天才,而这个lowbit恰恰是最精妙的一部分,可以准确的找到我们需要加的部分,巧妙的利用了计算机的位运算。

2.红黑树

defun rbt-balance (tree)  
  "Balance the rbtree list TREE."  
  (pcase tree  
    (`(B (R (R ,a ,x ,b) ,y ,c) ,z ,d) `(R (B ,a ,x ,b) ,y (B ,c ,z ,d)))  
    (`(B (R ,a ,x (R ,b ,y ,c)) ,z ,d) `(R (B ,a ,x ,b) ,y (B ,c ,z ,d)))  
    (`(B ,a ,x (R (R ,b ,y ,c) ,z ,d)) `(R (B ,a ,x ,b) ,y (B ,c ,z ,d)))  
    (`(B ,a ,x (R ,b ,y (R ,c ,z ,d))) `(R (B ,a ,x ,b) ,y (B ,c ,z ,d)))  
    (_                                 tree)))  
  
(defun rbt-insert- (x s)  
  "Auxilary function of rbt-insert."  
  (pcase s  
    (`nil              `(R nil ,x nil))  
    (`(,color ,a ,y ,b) (cond ((< x y)  
                               (rbt-balance `(,color ,(rbt-insert- x a) ,y ,b)))  
                              ((> x y)  
                               (rbt-balance `(,color ,a ,y ,(rbt-insert- x b))))  
                              (t  
                               s)))  
    (_                  (error "Expected tree: %S" s))))  
  
(defun rbt-insert (x s)  
  "Insert S to rbtree X."  
  (pcase (rbt-insert- x s)  
    (`(,_ ,a ,y ,b) `(B ,a ,y ,b))  
    (_              (error "Internal error: %S" s))))

3.星星打分

function getRating(rating) {  
    if(rating > 5 || rating < 0) throw new Error('数字不在范围内');  
    return '★★★★★☆☆☆☆☆'.substring(5 - rating, 10 - rating );  
}

这种实现方式之所以精妙,是因为它利用了字符串的固定模式和 substring 方法的灵活性来生成不同数量的星星,而不需要使用循环或额外的逻辑来逐个添加或删除星星。这种方法简洁且高效,特别是在需要频繁生成星级评分表示时。


然而,这段代码也有局限性,它假设评分总是整数,并且只支持0到5的评分范围。如果需要支持小数评分或更广泛的评分范围,这段代码将需要相应的调整。

4.欧几里得算法

function gcd(a, b) {  
    return b ? gcd(b, a % b) : a;   
}

这种递归实现的欧几里得算法非常简洁且高效。它利用了数学上的一个性质:两个整数的最大公约数与它们的余数和较小数的最大公约数相同。即 gcd(a, b) = gcd(b, a % b)。

5.快速幂

function fastPower(b, n) {  
    if (n === 0) return 1;  
    const result = fastPower(b, Math.floor(n / 2));  
    return n % 2 === 0 ? result * result : b * result * result;

用于高效地计算 b 的 n 次方。快速幂算法特别适用于计算大幂次的情况,因为它将幂次的计算复杂度从 O(n) 降低到 O(log n)。

6.并查集

int find(int x){  
  x==parent[x]?:find(parent[x]);  
}

并查集(Union-Find)数据结构中的 find 函数的简洁实现。


递归查找:find 函数通过递归的方式查找元素 x 的根节点。递归会在元素与其父节点不同时,继续查找父节点的父节点,直到找到一个元素其父节点是它自己的元素,即根节点。


路径压缩:代码中的三元运算符 ?: 实现了路径压缩技术。当 x 不是其根节点时(即 x != parent[x]),find 函数会调用自身并传入 parent[x] 作为参数。在递归返回的过程中,每个节点的父节点指针都被更新为最终的根节点,这样可以减少后续查找操作的深度。


相关文章
|
6月前
|
存储 人工智能 算法
深入浅出堆排序: 高效算法背后的原理与性能
深入浅出堆排序: 高效算法背后的原理与性能
113 1
|
30天前
|
算法
第七章 回溯算法理论基础
第七章 回溯算法理论基础
14 0
|
3月前
|
算法 搜索推荐 程序员
程序员常用算法详细讲解
每一种算法都有其适用场景,了解并熟悉这些常用算法的策略和实现,对于解决实际编程问题具有重要的意义。需要注意的是,理论知识的重要性虽然不言而喻,但真正的理解和掌握,还需要在实践中不断地尝试和错误,以达到深入理解的目的。
26 1
|
5月前
|
算法 C++
算法与数据结构高手养成:朴素的贪心法(上)最优化策略
算法与数据结构高手养成:朴素的贪心法(上)最优化策略
32 1
算法与数据结构高手养成:朴素的贪心法(上)最优化策略
|
6月前
|
机器学习/深度学习 监控 算法
【软件设计师】常见的算法设计方法——迭代法
【软件设计师】常见的算法设计方法——迭代法
|
6月前
|
设计模式 算法 知识图谱
算法设计与分析(贪心法)
【1月更文挑战第1天】在分析问题是否具有最优子结构性质时,通常先设出问题的最优解,给出子问题的解一定是最优的结论。证明思路是:设原问题的最优解导出子问题的解不是最优的,然后在这个假设下可以构造出比原问题的最优解更好的解,从而导致矛盾。(一个问题能够分解成各个子问题来解决,通过各个子问题的最优解能递推到原问题的最优解,此时原问题的最优解一定包含各个子问题的最优解,这是能够采用贪心法来求解问题的关键)贪心选择性质是指所求问题的整体最优解可以通过一系列局部最优的选择获得,即通过一系列的逐步局部最优选择使得最终的选择方案是全局最优的。
118 1
|
6月前
|
Go
IsNil() 和 IsValid() 的精妙运用
IsNil() 和 IsValid() 的精妙运用
205 0
|
算法 程序员 C#
谈谈算法的基本思想
谈谈算法的基本思想
60 0
|
算法 C语言
【算法】一篇文章弄清楚KMP算法的实现
【算法】一篇文章弄清楚KMP算法的实现
104 0
|
存储 算法
下一篇
无影云桌面