Problem Description
The inversion number of a given number sequence a1, a2, …, an is the number of pairs (ai, aj) that satisfy i < j and ai > aj.
For a given sequence of numbers a1, a2, …, an, if we move the first m >= 0 numbers to the end of the seqence, we will obtain another sequence. There are totally n such sequences as the following:
a1, a2, …, an-1, an (where m = 0 - the initial seqence)
a2, a3, …, an, a1 (where m = 1)
a3, a4, …, an, a1, a2 (where m = 2)
…
an, a1, a2, …, an-1 (where m = n-1)
You are asked to write a program to find the minimum inversion number out of the above sequences.
Input
The input consists of a number of test cases. Each case consists of two lines: the first line contains a positive integer n (n <= 5000); the next line contains a permutation of the n integers from 0 to n-1.
Output
For each case, output the minimum inversion number on a single line.
Sample Input
10
1 3 6 9 0 8 5 7 4 2
Sample Output
16
题目大意:
给你一个n个数的排列,然后可以将第一个元素放到最后一个,求这n个数列的最小的逆序数Min;
解题思路:
它的逆序列个数是N个,如果把t[i]放到t[N]后面,逆序列个数会减少t[i]个,相应会增加N-(t[i]+1)个
如果暴力的话,估计会超时,所以就用线段数搞一下,,注意线段树只是一个工具,!!
上代码:
#include <iostream>
#include <cstdio>
using namespace std;
const int maxn=5005;
int num[maxn];
struct
{
int l, r, num;
} tree[4*maxn];
void build(int root, int l, int r)
{
tree[root].l=l;
tree[root].r=r;
tree[root].num=0;
if(l == r)
return;
int mid=(l + r)>>1;
build(root<<1, l, mid);
build(root<<1|1, mid+1, r);
}
void update(int root, int pos)
{
if(tree[root].l == tree[root].r)
{
tree[root].num++;
return;
}
int mid=(tree[root].l+tree[root].r)>>1;
if(pos<=mid)
update(root<<1, pos);
else
update(root<<1|1, pos);
tree[root].num=tree[root<<1].num+tree[root<<1|1].num;
}
int query(int root, int L, int R)
{
if(L <= tree[root].l && R >= tree[root].r)
return tree[root].num;
int mid=(tree[root].l+tree[root].r)/2,ret=0;
if(L <= mid)
ret += query(2*root, L, R);
if(R>mid)
ret+=query(2*root+1, L, R);
return ret;
}
int main()
{
int m;
while(~scanf("%d",&m))
{
int sum=0;
build(1, 0, m);
for(int i=1; i<=m; i++)
{
scanf("%d",&num[i]);
update(1, num[i]);
sum+=query(1, num[i]+1, m);
}
int ans=sum;
for(int i=1; i<m; i++)
{
sum+=(m-1-num[i])-num[i];
if(sum<ans)
ans=sum;
}
printf("%d\n",ans);
}
return 0;
}