【C语言】:柔性数组和C/C++中程序内存区域划分

简介: 【C语言】:柔性数组和C/C++中程序内存区域划分

1. 什么是柔性数组

也许你从来没有听说过柔性数组这个概念,但是它确实是存在的。

C99中,结构体中的最后⼀个元素允许是未知大小的数组,这就叫做柔性数组成员

例如:

struct S
{
  int i;
  int arr[];//柔性数组成员
};

2. 柔性数组的特点

  • 结构体中的柔性数组成员前面必须至少有一个其他成员
  • sizeof返回的这种结构体大小不包括柔性数组的内存。
  • 包含柔性数组成员的结构体用malloc函数进行内存的动态分配,并且分配的内存应该大于结构的大小,以适应柔性数组的预期大小。

例如:

#include <stdio.h>
struct S
{
  int i;
  int arr[];//柔性数组成员
};
int main()
{
  int sz = sizeof(struct S);
  printf("%d\n", sz);
  return 0;
}

输出结果:

3. 柔性数组的使用

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <errno.h>
struct S
{
  int i;
  int arr[];//柔性数组成员
};
int main()
{
  //struct S s;//只申请了4字节空间,柔性数组没有申请空间
  struct S* ps=(struct S*)malloc(sizeof(struct S) + 40);//40字节是给柔性数组开辟的
  if (ps == NULL)
  {
    printf("%s\n", strerror(errno));
    return 1;
  }
  //使用
  ps->i = 100;
  int i = 0;
  for (i = 0; i < 10; i++)
  {
    ps->arr[i] = i;
  }
  for (i = 0; i < 10; i++)
  {
    printf("%d ", ps->arr[i]);
  }
  //调整空间,柔性数组柔性的体现
  struct S* ptr = (struct S*)realloc(ps, sizeof(struct S) + 80);
  if (ptr != NULL)
  {
    ps = ptr;
    ptr = NULL;
  }
  //……
  //释放
  free(ps);
  ps = NULL;
  return 0;
}

当前代码的内存布局如图所示:

思考:有人会想到那为什么那为什么不直接让结构体成员为int * ,然后动态开辟一块空间给int * 指向呢?

代码实现如下:

#include <stdio.h>
#include <stdlib.h>
struct S
{
  int n;
  int* arr;
};
int main()
{
  struct S*ps = (struct S*)malloc(sizeof(struct S));
  if (ps == NULL)
  {
    return 1;
  }
  ps->n = 100;
  ps->arr = (int*)malloc(40);
  if (ps->arr == NULL)
  {
    return 1;
  }
  //使用
  int i = 0;
  for (i = 0; i < 10; i++)
  {
    ps->arr[i] = i;
  }
  for (i = 0; i < 10; i++)
  {
    printf("%d ", ps->arr[i]);
  }
  //扩容
  int* ptr = (int*)realloc(ps->arr, 80);
  if (ptr != NULL)
  {
    ps->arr = ptr;
  }
  //释放
  free(ps->arr);
  free(ps);
  ps = NULL;
  return 0;
}

内存布局如图所示:

在结构体中这两种方式都能实现“柔性”的效果(空间可调整),哪一种方式更好呢?我们进行对比:

在方式1中使用柔性数组时,n和arr的空间只要使用一次malloc就可以全部开辟,最后一次free就可以释放。

而方式2中struct需要一次malloc开辟,arr又需要malloc开辟,最后也要2次free才可以释放

我们知道使用malloc的次数越多,如果忘记了free,则就越容易造成内存泄漏,其次就是如果在内存中频繁的进行malloc,则形成的内存碎片也越多,这样会使内存的利用率更低。

4. 柔性数组的优势

  1. 方便内存释放
    如果我们的代码是在⼀个给别人用的函数中,你在里面做了⼆次内存分配,并把整个结构体返回给用户。用户调用free可以释放结构体,但是用户并不知道这个结构体内的成员也需要free,所以你不能指望用户来发现这个事。所以,如果我们把结构体的内存以及其成员要的内存⼀次性分配好了,并返回给用户⼀个结构体指针,用户做⼀次free就可以把所有的内存也给释放掉。
  2. 这样有利于访问速度
    连续的内存有益于提高访问速度,也有益于减少内存碎片。

5. C/C++中程序内存区域划分

C/C++程序内存分配的几个区域:

  1. 栈区(stack):在执行函数时,函数内局部变量的存储单元都可以在栈上创建,函数执行结束时这些存储单元自动被释放。栈内存分配运算内置于处理器的指令集中,效率很高,但是分配的内存容量有限。栈区主要存放运行函数而分配的局部变量、局部数组,函数参数、返回数据、返回地址等。
  2. 堆区(heap):⼀般由程序员分配释放,若程序员不释放,程序结束时可能由OS回收。分配方式类似于链表。堆区主要存放由malloc,coalloc,realloc,free等动态申请的空间。
  3. 数据段(静态区)(static)存放全局变量、静态数据。程序结束后由系统释放。
  4. 代码段存放函数体(类成员函数和全局函数)的二进制代码。
目录
相关文章
|
2月前
|
安全 C语言 C++
比较C++的内存分配与管理方式new/delete与C语言中的malloc/realloc/calloc/free。
在实用性方面,C++的内存管理方式提供了面向对象的特性,它是处理构造和析构、需要类型安全和异常处理的首选方案。而C语言的内存管理函数适用于简单的内存分配,例如分配原始内存块或复杂性较低的数据结构,没有构造和析构的要求。当从C迁移到C++,或在C++中使用C代码时,了解两种内存管理方式的差异非常重要。
120 26
|
2月前
|
安全 C语言
C语言中的字符、字符串及内存操作函数详细讲解
通过这些函数的正确使用,可以有效管理字符串和内存操作,它们是C语言编程中不可或缺的工具。
231 15
|
7月前
|
存储 程序员 编译器
玩转C++内存管理:从新手到高手的必备指南
C++中的内存管理是编写高效、可靠程序的关键所在。C++不仅继承了C语言的内存管理方式,还增加了面向对象的内存分配机制,使得内存管理既有灵活性,也更加复杂。学习内存管理不仅有助于提升程序效率,还有助于理解计算机的工作原理和资源分配策略。
|
3月前
|
C语言 C++
c与c++的内存管理
再比如还有这样的分组: 这种分组是最正确的给出内存四个分区名字:栈区、堆区、全局区(俗话也叫静态变量区)、代码区(也叫代码段)(代码段又分很多种,比如常量区)当然也会看到别的定义如:两者都正确,记那个都选,我选择的是第一个。再比如还有这样的分组: 这种分组是最正确的答案分别是 C C C A A A A A D A B。
52 1
|
6月前
|
存储 Linux C语言
C++/C的内存管理
本文主要讲解C++/C中的程序区域划分与内存管理方式。首先介绍程序区域,包括栈(存储局部变量等,向下增长)、堆(动态内存分配,向上分配)、数据段(存储静态和全局变量)及代码段(存放可执行代码)。接着探讨C++内存管理,new/delete操作符相比C语言的malloc/free更强大,支持对象构造与析构。还深入解析了new/delete的实现原理、定位new表达式以及二者与malloc/free的区别。最后附上一句鸡汤激励大家行动缓解焦虑。
|
7月前
|
安全 C语言 C++
彻底摘明白 C++ 的动态内存分配原理
大家好,我是V哥。C++的动态内存分配允许程序在运行时请求和释放内存,主要通过`new`/`delete`(用于对象)及`malloc`/`calloc`/`realloc`/`free`(继承自C语言)实现。`new`分配并初始化对象内存,`delete`释放并调用析构函数;而`malloc`等函数仅处理裸内存,不涉及构造与析构。掌握这些可有效管理内存,避免泄漏和悬空指针问题。智能指针如`std::unique_ptr`和`std::shared_ptr`能自动管理内存,确保异常安全。关注威哥爱编程,了解更多全栈开发技巧。 先赞再看后评论,腰缠万贯财进门。
316 0
|
7月前
|
编译器 C++ 开发者
【C++篇】深度解析类与对象(下)
在上一篇博客中,我们学习了C++的基础类与对象概念,包括类的定义、对象的使用和构造函数的作用。在这一篇,我们将深入探讨C++类的一些重要特性,如构造函数的高级用法、类型转换、static成员、友元、内部类、匿名对象,以及对象拷贝优化等。这些内容可以帮助你更好地理解和应用面向对象编程的核心理念,提升代码的健壮性、灵活性和可维护性。
|
3月前
|
人工智能 机器人 编译器
c++模板初阶----函数模板与类模板
class 类模板名private://类内成员声明class Apublic:A(T val):a(val){}private:T a;return 0;运行结果:注意:类模板中的成员函数若是放在类外定义时,需要加模板参数列表。return 0;
82 0
|
3月前
|
存储 编译器 程序员
c++的类(附含explicit关键字,友元,内部类)
本文介绍了C++中类的核心概念与用法,涵盖封装、继承、多态三大特性。重点讲解了类的定义(`class`与`struct`)、访问限定符(`private`、`public`、`protected`)、类的作用域及成员函数的声明与定义分离。同时深入探讨了类的大小计算、`this`指针、默认成员函数(构造函数、析构函数、拷贝构造、赋值重载)以及运算符重载等内容。 文章还详细分析了`explicit`关键字的作用、静态成员(变量与函数)、友元(友元函数与友元类)的概念及其使用场景,并简要介绍了内部类的特性。
158 0
|
5月前
|
编译器 C++ 容器
【c++11】c++11新特性(上)(列表初始化、右值引用和移动语义、类的新默认成员函数、lambda表达式)
C++11为C++带来了革命性变化,引入了列表初始化、右值引用、移动语义、类的新默认成员函数和lambda表达式等特性。列表初始化统一了对象初始化方式,initializer_list简化了容器多元素初始化;右值引用和移动语义优化了资源管理,减少拷贝开销;类新增移动构造和移动赋值函数提升性能;lambda表达式提供匿名函数对象,增强代码简洁性和灵活性。这些特性共同推动了现代C++编程的发展,提升了开发效率与程序性能。
159 12