【YOLOv8改进】CAFM(Convolution and Attention Fusion Module):卷积和注意力融合模块

简介: **HCANet: 高光谱图像去噪新方法** HCANet是一种结合CNN与Transformer的深度学习模型,专为高光谱图像设计。它使用卷积注意力融合模块(CAFM)捕捉局部和全局特征,并通过多尺度前馈网络(MSFN)增强多尺度信息聚合,提升去噪效果。CAFM包含卷积和注意力分支,整合局部细节与长距离依赖。代码已开源:[GitHub](https://github.com/summitgao/HCANet)。

摘要

摘要——高光谱图像(HSI)去噪对于高光谱数据的有效分析和解释至关重要。然而,同时建模全局和局部特征以增强HSI去噪的研究却很少。在本文中,我们提出了一种混合卷积和注意力网络(HCANet),该网络结合了卷积神经网络(CNN)和Transformers的优势。为了增强全局和局部特征的建模,我们设计了一个卷积和注意力融合模块,旨在捕捉长距离依赖关系和邻域光谱相关性。此外,为了改进多尺度信息聚合,我们设计了一个多尺度前馈网络,通过在不同尺度上提取特征来增强去噪性能。在主流HSI数据集上的实验结果表明,所提出的HCANet具有合理性和有效性。所提出的模型在去除各种复杂噪声方面表现出色。我们的代码可在https://github.com/summitgao/HCANet获得。

YOLO目标检测创新改进与实战案例专栏

专栏目录: YOLO有效改进系列及项目实战目录 包含卷积,主干 注意力,检测头等创新机制 以及 各种目标检测分割项目实战案例

专栏链接: YOLO基础解析+创新改进+实战案例

文章链接

论文地址:论文地址

代码地址:代码地址

基本原理

这篇文章介绍了一种名为Hybrid Convolutional and Attention Network (HCANet)的模型,用于高光谱图像去噪。该模型结合了卷积神经网络和Transformer的优势,以有效地去除高光谱图像中的噪声。文章提出了注意力机制,用于捕获远程依赖性和邻域光谱相关性,以增强全局和局部特征建模。通过设计卷积和注意力融合模块以及多尺度前馈网络,该模型能够在不同尺度提取特征,从而提高去噪性能。

  1. 结构概述:HCANet采用了U型网络结构,其中包含多个Convolution Attention Mixing(CAMixing)块。每个CAMixing块由两部分组成:卷积和注意力融合模块(CAFM)以及多尺度前馈网络(MSFN)。

  2. CAFM模块:在CAFM模块中,局部分支利用卷积和通道重排来提取局部特征,全局分支则利用注意力机制来捕获长距离依赖关系。这种结合了卷积和注意力的设计使得模型能够综合建模全局和局部特征,从而提高去噪性能。

  3. MSFN模块:MSFN模块用于多尺度信息聚合,通过三个并行的具有不同步长的扩张卷积来实现。这有助于在不同尺度提取特征,有效地抑制多尺度的噪声。

  4. 训练过程:HCANet首先使用3x3x3卷积提取低级特征,然后通过U型网络结构和跳跃连接来生成噪声残差图。最终,通过重建损失和全局梯度正则化器来训练模型,以实现高光谱图像的去噪。

通过结合CAFM模块和MSFN模块,HCANet能够有效地利用卷积和注意力机制,同时在不同尺度提取特征,从而提高高光谱图像去噪的性能和效果。

CAFM

CAFM是指卷积和注意力融合模块(Convolution and Attention Fusion Module),在HCANet模型中起着关键作用。该模块包括局部分支和全局分支,用于融合卷积和注意力机制以捕获全局和局部特征。以下是关于CAFM的详细介绍:

  1. 局部分支:局部分支旨在提取局部特征,通过卷积和通道重排来实现。这一部分专注于在高光谱图像中提取局部信息,以帮助全局和局部特征的综合建模。

  2. 全局分支:全局分支利用注意力机制来建模长距离特征依赖关系。通过注意力机制,模型能够捕获更广泛的高光谱数据信息,从而更好地理解全局特征。

  3. 融合操作:在CAFM模块中,局部分支和全局分支的特征经过融合操作,通常是通过加法操作来融合两者的特征表示。这种融合操作能够有效地结合局部和全局信息,提高模型对高光谱图像的理解能力和去噪效果。

yolov8 加入代码

## 卷积和注意力融合模块 (CAFM)
class CAFMAttention(nn.Module):
    def __init__(self, dim, num_heads, bias):
        super(Attention, self).__init__()
        self.num_heads = num_heads
        self.temperature = nn.Parameter(torch.ones(num_heads, 1, 1))

        self.qkv = nn.Conv3d(dim, dim * 3, kernel_size=(1, 1, 1), bias=bias)
        self.qkv_dwconv = nn.Conv3d(dim * 3, dim * 3, kernel_size=(3, 3, 3), stride=1, padding=1, groups=dim * 3, bias=bias)
        self.project_out = nn.Conv3d(dim, dim, kernel_size=(1, 1, 1), bias=bias)
        self.fc = nn.Conv3d(3 * self.num_heads, 9, kernel_size=(1, 1, 1), bias=True)

        self.dep_conv = nn.Conv3d(9 * dim // self.num_heads, dim, kernel_size=(3, 3, 3), bias=True, groups=dim // self.num_heads, padding=1)

    def forward(self, x):
        b, c, h, w = x.shape
        x = x.unsqueeze(2)
        qkv = self.qkv_dwconv(self.qkv(x))
        qkv = qkv.squeeze(2)
        f_conv = qkv.permute(0, 2, 3, 1)
        f_all = qkv.reshape(f_conv.shape[0], h * w, 3 * self.num_heads, -1).permute(0, 2, 1, 3)
        f_all = self.fc(f_all.unsqueeze(2))
        f_all = f_all.squeeze(2)

        # 局部卷积
        f_conv = f_all.permute(0, 3, 1, 2).reshape(x.shape[0], 9 * x.shape[1] // self.num_heads, h, w)
        f_conv = f_conv.unsqueeze(2)
        out_conv = self.dep_conv(f_conv)
        out_conv = out_conv.squeeze(2)

        # 全局自注意力
        q, k, v = qkv.chunk(3, dim=1)

        q = rearrange(q, 'b (head c) h w -> b head c (h w)', head=self.num_heads)
        k = rearrange(k, 'b (head c) h w -> b head c (h w)', head=self.num_heads)
        v = rearrange(v, 'b (head c) h w -> b head c (h w)', head=self.num_heads)

        q = torch.nn.functional.normalize(q, dim=-1)
        k = torch.nn.functional.normalize(k, dim=-1)

        attn = (q @ k.transpose(-2, -1)) * self.temperature
        attn = attn.softmax(dim=-1)

        out = (attn @ v)

        out = rearrange(out, 'b head c (h w) -> b (head c) h w', head=self.num_heads, h=h, w=w)
        out = out.unsqueeze(2)
        out = self.project_out(out)
        out = out.squeeze(2)
        output = out + out_conv

        return output

task与yaml配置

详见:https://blog.csdn.net/shangyanaf/article/details/139305822

相关文章
|
2月前
|
机器学习/深度学习 测试技术 计算机视觉
【YOLOv11改进 - 注意力机制】LSKA(Large Separable Kernel Attention):大核分离卷积注意力模块
【YOLOv11改进 - 注意力机制】LSKA(Large Separable Kernel Attention):大核分离卷积注意力模块
【YOLOv11改进 - 注意力机制】LSKA(Large Separable Kernel Attention):大核分离卷积注意力模块
|
8月前
|
机器学习/深度学习 编解码 边缘计算
YOLOv5改进 | 卷积模块 | 用ShuffleNetV2卷积替换Conv【轻量化网络】
本文介绍了如何在YOLOv5中用ShuffleNetV2替换卷积以减少计算量。ShuffleNetV2是一个轻量级网络,采用深度可分离卷积、通道重组和多尺度特征融合技术。文中提供了一个逐步教程,包括ShuffleNetV2模块的代码实现和在YOLOv5配置文件中的添加方法。此外,还分享了完整的代码链接和GFLOPs的比较,显示了GFLOPs的显著减少。该教程适合初学者实践,以提升深度学习目标检测技能。
YOLOv5改进 | 卷积模块 | 用ShuffleNetV2卷积替换Conv【轻量化网络】
|
2月前
|
机器学习/深度学习 计算机视觉
【YOLOv11改进 - 注意力机制】 MSDA(Multi-Scale Dilated Attention):多尺度空洞注意力
【YOLOv11改进 - 注意力机制】 MSDA(Multi-Scale Dilated Attention):多尺度空洞注意力本文介绍了一种高效的视觉变换器——DilateFormer,通过多尺度扩张注意力(MSDA)模块,在保持高性能的同时显著降低计算成本。MSDA通过在滑动窗口内模拟局部和稀疏的块交互,实现了多尺度特征聚合。实验结果显示,DilateFormer在ImageNet-1K分类、COCO对象检测/实例分割和ADE20K语义分割任务上均取得了优异的性能,且计算成本比现有模型减少70%。
【YOLOv11改进 - 注意力机制】 MSDA(Multi-Scale Dilated Attention):多尺度空洞注意力
|
2月前
|
机器学习/深度学习 计算机视觉 Python
【YOLOv11改进 - 注意力机制】EMA(Efficient Multi-Scale Attention):基于跨空间学习的高效多尺度注意力
【YOLOv11改进 - 注意力机制】EMA(Efficient Multi-Scale Attention):基于跨空间学习的高效多尺度注意力.EMA(Efficient Multi-Scale Attention)模块是一种高效多尺度注意力机制,旨在提高计算机视觉任务中的特征表示效果。该模块通过结合通道和空间信息、采用多尺度并行子网络结构以及优化坐标注意力机制,实现了更高效和有效的特征表示。EMA模块在图像分类和目标检测任务中表现出色,使用CIFAR-100、ImageNet-1k、MS COCO和VisDrone2019等数据集进行了广泛测试。
【YOLOv11改进 - 注意力机制】EMA(Efficient Multi-Scale Attention):基于跨空间学习的高效多尺度注意力
|
2月前
|
机器学习/深度学习 自然语言处理 计算机视觉
【YOLOv11改进 - 注意力机制】 MHSA:多头自注意力(Multi-Head Self-Attention)
【YOLOv11改进 - 注意力机制】 MHSA:多头自注意力(Multi-Head Self-Attention)BoTNet是一种将自注意力机制引入ResNet的创新架构,通过在最后三个瓶颈块中用全局自注意力替换空间卷积,显著提升了图像分类、物体检测和实例分割的性能,同时减少了参数量和计算开销。在COCO实例分割和ImageNet分类任务中,BoTNet分别达到了44.4%的Mask AP和84.7%的Top-1准确率,超越了现有模型。
【YOLOv11改进 - 注意力机制】 MHSA:多头自注意力(Multi-Head Self-Attention)
|
6月前
|
机器学习/深度学习 算法 测试技术
【YOLOv8改进 - 注意力机制】Focused Linear Attention :全新的聚焦线性注意力模块
YOLOv8专栏探讨了该目标检测算法的创新改进,包括使用聚焦线性注意力模块,解决了Transformer在视觉任务中的效率和表达力问题。该模块增强自注意力,提高焦点能力和特征多样性,保持线性复杂度。文章提供了实证证据证明其在多个基准上的性能提升,并在GitHub上发布了代码。论文和更多实战案例链接见文中。
|
6月前
|
机器学习/深度学习 编解码 自然语言处理
【YOLOv8改进 - 注意力机制】 MHSA:多头自注意力(Multi-Head Self-Attention)
YOLO目标检测专栏探讨了BoTNet,一种在ResNet瓶颈块中用全局自注意力替换卷积的架构,提升实例分割和检测性能。BoTNet表现优于先前的ResNeSt,且在ImageNet上速度更快。文章介绍了多头自注意力(MHSA)机制,用于学习输入的不同部分间的关系。BoTNet的MHSA层整合在低分辨率特征图中,以捕获长距离依赖。YOLOv8进一步引入MHSA,通过具体的模块定义(如提供的`MHSA`类)来增强模型的注意力机制。相关论文和代码链接可供参考。
|
6月前
|
机器学习/深度学习 编解码 计算机视觉
【YOLOv10改进-注意力机制】HAT(Hybrid Attention Transformer,)混合注意力机制
YOLOv10专栏介绍了一种名为HAT的新方法,旨在改善Transformer在图像超分辨率中的表现。HAT结合通道和窗口注意力,激活更多像素并增强跨窗口信息交互。亮点包括:1) 更多像素激活,2) 有效跨窗口信息聚合,3) 任务特定的预训练策略。HAT模型包含浅层特征提取、深层特征提取和图像重建阶段。提供的代码片段展示了HAT类的定义,参数包括不同层的深度、注意力头数量、窗口大小等。欲了解更多详情和配置,请参考给定链接。
|
7月前
|
机器学习/深度学习 计算机视觉 网络架构
【YOLOv8改进-卷积Conv】DualConv( Dual Convolutional):用于轻量级深度神经网络的双卷积核
**摘要:** 我们提出DualConv,一种融合$3\times3$和$1\times1$卷积的轻量级DNN技术,适用于资源有限的系统。它通过组卷积结合两种卷积核,减少计算和参数量,同时增强准确性。在MobileNetV2上,参数减少54%,CIFAR-100精度仅降0.68%。在YOLOv3中,DualConv提升检测速度并增4.4%的PASCAL VOC准确性。论文及代码已开源。
|
7月前
|
测试技术 计算机视觉
【YOLOv8改进】LSKA(Large Separable Kernel Attention):大核分离卷积注意力模块 (论文笔记+引入代码)
YOLO目标检测专栏介绍了大可分卷积核注意力模块LSKA,用于解决VAN中大卷积核效率问题。LSKA通过分解2D卷积为1D卷积降低计算复杂度和内存占用,且使模型关注形状而非纹理,提高鲁棒性。在多种任务和数据集上,LSKA表现优于ViTs和ConvNeXt,代码可在GitHub获取。基础原理包括LSKA的卷积核分解设计和计算效率优化。示例展示了LSKA模块的实现。更多详情及配置参见相关链接。