生成式人工智能(AIGC,Generative AI)

简介: 生成式人工智能(AIGC,Generative AI)

生成式人工智能(AIGC,Generative AI)指的是一类人工智能技术,其主要特点是能够生成新的数据样本,如文本、图像、音频等,而不仅仅是对现有数据进行分类或预测。

 

### 主要特点和应用领域:

 

1. **生成新的内容**:AIGC能够从学习的数据中生成新的、类似的内容。例如,文本生成模型可以写作新文章或故事,图像生成模型可以创造出看起来逼真的新图像。

 

2. **多样性和创造力**:与传统的机器学习模型相比,AIGC能够在生成内容时展现出更大的多样性和创造力,因为它们不是简单地匹配现有模式,而是能够推理出新的模式和结构。

 

3. **应用领域**:

  - **创意产业**:如艺术创作、音乐生成、文学作品创作等,AIGC可以作为艺术家和创作者的工具,提供创作灵感或直接生成作品。

  - **内容生成和自动化写作**:在新闻报道、广告文案、科技说明等领域,AIGC可以帮助生成大量高质量的文本内容。

  - **虚拟现实和游戏开发**:生成逼真的图像和场景,提升虚拟世界的真实感和交互性。

  - **医疗诊断和治疗**:例如,通过生成式模型可以提供个性化的医疗建议或治疗方案。

 

4. **技术挑战和伦理考量**:尽管AIGC在创新和应用上有巨大潜力,但也面临着数据隐私、偏见增强等技术和伦理挑战,需要通过合适的监管和技术发展来解决。

 

总体来说,生成式人工智能代表了AI技术在创意和创新方面的进步,正在广泛应用于多个领域,并且不断推动着数字内容的创新和生产方式的变革。

 

当涉及到生成式人工智能的代码实现时,最常见的框架之一是基于深度学习的生成对抗网络(GANs)和变分自编码器(VAEs)。这些模型可以用来生成各种类型的数据,如图像、文本或音频。以下是一个简单的示例代码,展示如何使用Python和TensorFlow实现一个简单的GAN模型来生成手写数字图像(MNIST数据集)的例子:

```python
import numpy as np
import matplotlib.pyplot as plt
import tensorflow as tf
from tensorflow.keras.layers import Dense, Reshape, Flatten
from tensorflow.keras.models import Sequential
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.datasets import mnist

# 加载MNIST数据集

(X_train, _), (_, _) = mnist.load_data()

# 数据预处理

X_train = (X_train.astype(np.float32) - 127.5) / 127.5
X_train = X_train.reshape(X_train.shape[0], 784)

# 定义生成器模型

generator = Sequential([
    Dense(256, input_dim=100, activation='relu'),
    Dense(512, activation='relu'),
    Dense(1024, activation='relu'),
    Dense(784, activation='tanh'),
    Reshape((28, 28))
])
 
```
目录
相关文章
|
5月前
|
人工智能 JavaScript
生成式人工智能(GAI)认证:2025最值得考的AI证书!
生成式人工智能(GAI)认证由全球教育巨头 Pearson 推出,融合技术原理、实战应用与伦理合规的三维培养框架。该项目与 AI 领域领先企业合作开发,涵盖提示优化、基础提示工程及社会影响等核心内容,助力学习者全面掌握 GAI 技能。中文版认证已落地中国,由达内教育与恒利联创战略合作推广,深度融合本土 AI 平台。作为高含金量的全球认可证书,GAI 认证可提升职业竞争力,满足行业对复合型 AI 人才的需求,为个人和企业开辟数字时代新机遇。
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
AIGC技术深度解析:生成式AI的革命性突破与产业应用实战
蒋星熠Jaxonic,AI技术探索者,深耕生成式AI领域。本文系统解析AIGC核心技术,涵盖Transformer架构、主流模型对比与实战应用,分享文本生成、图像创作等场景的实践经验,展望技术趋势与产业前景,助力开发者构建完整认知体系,共赴AI原生时代。
|
2月前
|
数据采集 传感器 人工智能
没有大数据,哪来人工智能?——聊聊“大数据喂养下的AI进化史”
没有大数据,哪来人工智能?——聊聊“大数据喂养下的AI进化史”
169 6
|
3月前
|
存储 人工智能 运维
|
6月前
|
人工智能 自然语言处理 搜索推荐
年终盘点AIGC:生成式AI一路生花,互联网开始步入大模型时代
本文探讨了自ChatGPT发布以来,生成式AI对互联网和人们生活带来的深刻影响。文章分析了从“移动互联网”到“智能互联网”的转变,强调AIGC如何通过自然语言交互提升信息获取效率,并在内容创作等领域展现巨大潜力。同时,作者指出当前AIGC应用开发存在的问题,如过度聚焦对话助手,建议开发者探索更深层次的场景结合。最后,文章展望了AIGC未来可能的法律监管及现象级产品的出现,并鼓励普通人善用AIGC工具提升效率,保持创造力以适应时代变化。
109 0
年终盘点AIGC:生成式AI一路生花,互联网开始步入大模型时代
|
5月前
|
机器学习/深度学习 人工智能 自然语言处理
2025人工智能证书|2025年人工智能行业AI证书如何选择?
在2025年AI浪潮中,生成式AI已成为职场核心竞争力。企业招聘将“AI能力”设为基础门槛,如何选择有价值的AI认证?本文从行业趋势、证书价值、备考策略及职业规划四大维度解析。GAI认证由培生推出,涵盖核心技术与实际应用,结合理论与实践考核,助力职业发展。它不仅评估技术能力,还注重伦理法律等复合技能。备考需分阶段规划,善用官方资源,注重实践。无论转型、深耕还是管理晋升,GAI认证均适合作为起点,抢占AI时代先机。

热门文章

最新文章