Python教程:一文了解Python的深拷贝与浅拷贝

简介: 理解 Python 中的深拷贝(deep copy)和浅拷贝(shallow copy)是非常重要的,特别是在处理嵌套结构的数据时。让我们深入探讨这两个概念,并通过代码示例进行说明。

一.深拷贝与浅拷贝


理解 Python 中的深拷贝(deep copy)和浅拷贝(shallow copy)是非常重要的,特别是在处理嵌套结构的数据时。让我们深入探讨这两个概念,并通过代码示例进行说明。

1. 浅拷贝(Shallow Copy):

浅拷贝创建一个新的对象,但是这个新对象中的子对象是原始对象中子对象的引用。换句话说,只拷贝了对象的第一层结构,而深层嵌套的对象则共享引用。

import copy
# 原始列表
original_list = [[1, 2, 3], [4, 5, 6]]
# 浅拷贝
shallow_copy = copy.copy(original_list)
# 修改原始列表的子列表
original_list[0][0] = 100
print("Original List:", original_list)
print("Shallow Copy:", shallow_copy)

image.gif

输出结果为:

Original List: [[100, 2, 3], [4, 5, 6]]
Shallow Copy: [[100, 2, 3], [4, 5, 6]]

image.gif

在这个例子中,虽然我们只修改了原始列表的子列表,但是浅拷贝的结果也受到了影响,因为浅拷贝只复制了第一层结构,而子列表仍然是原始对象中子列表的引用。

2. 深拷贝(Deep Copy):

深拷贝创建一个完全独立的新对象,包括对象中的所有子对象。无论有多少层嵌套,都会被完整复制,而不是共享引用。

import copy
# 原始列表
original_list = [[1, 2, 3], [4, 5, 6]]
# 深拷贝
deep_copy = copy.deepcopy(original_list)
# 修改原始列表的子列表
original_list[0][0] = 100
print("Original List:", original_list)
print("Deep Copy:", deep_copy)

image.gif

输出结果为:

Original List: [[100, 2, 3], [4, 5, 6]]
Deep Copy: [[1, 2, 3], [4, 5, 6]]

image.gif

在这个例子中,深拷贝创建了一个独立的新对象,即使修改了原始列表的子列表,深拷贝的结果也不受影响。

总结:

  • 浅拷贝只复制对象的第一层结构,深拷贝复制了对象的所有层级结构。
  • 浅拷贝会共享引用,而深拷贝则创建完全独立的新对象。
  • 使用 copy 模块的 copy() 函数进行浅拷贝,使用 copy.deepcopy() 函数进行深拷贝。

何时使用浅拷贝和深拷贝?

  • 使用浅拷贝当你只关心顶层结构,而不关心嵌套对象的修改是否会影响原始对象。
  • 使用深拷贝当你需要创建一个原始对象的完整独立副本,以便修改副本不影响原始对象。

二.可变对象与不可变对象


在Python中,对象可以分为可变对象(mutable objects)和不可变对象(immutable objects)。这两种对象类型在内存中的行为有着重要的差异,理解它们对于编写高效的Python代码至关重要。

不可变对象(Immutable Objects):

不可变对象指的是在创建后无法修改其值或状态的对象。每次对不可变对象进行修改时,实际上是创建了一个新的对象。Python中的不可变对象包括但不限于以下几种:

  • 整数(int)
  • 浮点数(float)
  • 复数(complex)
  • 字符串(str)
  • 元组(tuple)

特点:

  1. 不可变对象的值或状态在创建后不可修改。
  2. 每次对不可变对象进行修改时,都会创建一个新的对象。
# 示例:不可变对象
a = 10  # 整数是不可变对象
b = a   # b指向a所指向的对象(10)
a = 20  # 创建新的对象20,并让a指向新对象
print(a)  # 输出 20
print(b)  # 输出 10,b仍然指向原始对象10

image.gif

可变对象(Mutable Objects):

可变对象是在创建后可以修改其值或状态的对象。对可变对象的修改不会创建新的对象,而是直接在原始对象上进行操作。Python中的可变对象包括但不限于以下几种:

  • 列表(list)
  • 字典(dict)
  • 集合(set)
  • 用户自定义的类(class)

特点:

  1. 可变对象的值或状态可以在创建后被修改。
  2. 对可变对象的修改会直接影响原始对象,不会创建新的对象。
# 示例:可变对象
list_a = [1, 2, 3]  # 列表是可变对象
list_b = list_a     # list_b指向list_a所指向的对象([1, 2, 3])
list_a.append(4)    # 直接修改list_a所指向的对象,不创建新的对象
print(list_a)       # 输出 [1, 2, 3, 4]
print(list_b)       # 输出 [1, 2, 3, 4],list_b指向的对象也被修改了

image.gif

三.字典深拷贝示例


下面是一个完整的示例,演示了如何进行深拷贝一个包含复杂结构的Python字典

import copy
# 原始字典
original_dict = {
    'name': 'John',
    'age': 30,
    'address': {
        'city': 'New York',
        'zipcode': '10001'
    },
    'emails': ['john@example.com', 'john.doe@example.com']
}
# 执行深拷贝
deep_copy_dict = copy.deepcopy(original_dict)
# 修改原始字典中的某些值
original_dict['name'] = 'Jane'
original_dict['address']['city'] = 'Los Angeles'
original_dict['emails'].append('jane@example.com')
# 打印原始字典和深拷贝后的字典
print("Original Dictionary:")
print(original_dict)
print("\nDeep Copied Dictionary:")
print(deep_copy_dict)

image.gif

输出结果:

Original Dictionary:
{'name': 'Jane', 'age': 30, 'address': {'city': 'Los Angeles', 'zipcode': '10001'}, 'emails': ['john@example.com', 'john.doe@example.com', 'jane@example.com']}
Deep Copied Dictionary:
{'name': 'John', 'age': 30, 'address': {'city': 'New York', 'zipcode': '10001'}, 'emails': ['john@example.com', 'john.doe@example.com']}

image.gif

解释:

  1. 我们首先定义了一个包含复杂结构的原始字典 original_dict,其中包括字符串、整数、嵌套字典和列表。
  2. 使用 copy.deepcopy() 函数对原始字典进行深拷贝,得到了一个完全独立的新字典 deep_copy_dict
  3. 修改原始字典中的一些值,包括姓名、地址和电子邮件列表。
  4. 打印原始字典和深拷贝后的字典,可以看到原始字典的修改不会影响深拷贝后的字典。
目录
相关文章
|
5月前
|
数据采集 存储 XML
Python爬虫技术:从基础到实战的完整教程
最后强调: 父母法律法规限制下进行网络抓取活动; 不得侵犯他人版权隐私利益; 同时也要注意个人安全防止泄露敏感信息.
848 19
|
4月前
|
索引 Python
Python 列表切片赋值教程:掌握 “移花接木” 式列表修改技巧
本文通过生动的“嫁接”比喻,讲解Python列表切片赋值操作。切片可修改原列表内容,实现头部、尾部或中间元素替换,支持不等长赋值,灵活实现列表结构更新。
178 1
|
5月前
|
数据采集 存储 JSON
使用Python获取1688商品详情的教程
本教程介绍如何使用Python爬取1688商品详情信息,涵盖环境配置、代码编写、数据处理及合法合规注意事项,助你快速掌握商品数据抓取与保存技巧。
|
7月前
|
机器学习/深度学习 数据安全/隐私保护 计算机视觉
过三色刷脸技术,过三色刷脸技术教程,插件过人脸python分享学习
三色刷脸技术是基于RGB三通道分离的人脸特征提取方法,通过分析人脸在不同颜色通道的特征差异
|
7月前
|
XML Linux 区块链
Python提取Word表格数据教程(含.doc/.docx)
本文介绍了使用LibreOffice和python-docx库处理DOC文档表格的方法。首先需安装LibreOffice进行DOC到DOCX的格式转换,然后通过python-docx读取和修改表格数据。文中提供了详细的代码示例,包括格式转换函数、表格读取函数以及修改保存功能。该方法适用于Windows和Linux系统,解决了老旧DOC格式文档的处理难题,为需要处理历史文档的用户提供了实用解决方案。
839 1
|
6月前
|
并行计算 算法 Java
Python3解释器深度解析与实战教程:从源码到性能优化的全路径探索
Python解释器不止CPython,还包括PyPy、MicroPython、GraalVM等,各具特色,适用于不同场景。本文深入解析Python解释器的工作原理、内存管理机制、GIL限制及其优化策略,并介绍性能调优工具链及未来发展方向,助力开发者提升Python应用性能。
397 0
|
6月前
|
数据采集 索引 Python
Python Slice函数使用教程 - 详解与示例 | Python切片操作指南
Python中的`slice()`函数用于创建切片对象,以便对序列(如列表、字符串、元组)进行高效切片操作。它支持指定起始索引、结束索引和步长,提升代码可读性和灵活性。
|
9月前
|
人工智能 安全 Shell
Jupyter MCP服务器部署实战:AI模型与Python环境无缝集成教程
Jupyter MCP服务器基于模型上下文协议(MCP),实现大型语言模型与Jupyter环境的无缝集成。它通过标准化接口,让AI模型安全访问和操作Jupyter核心组件,如内核、文件系统和终端。本文深入解析其技术架构、功能特性及部署方法。MCP服务器解决了传统AI模型缺乏实时上下文感知的问题,支持代码执行、变量状态获取、文件管理等功能,提升编程效率。同时,严格的权限控制确保了安全性。作为智能化交互工具,Jupyter MCP为动态计算环境与AI模型之间搭建了高效桥梁。
610 2
Jupyter MCP服务器部署实战:AI模型与Python环境无缝集成教程
|
8月前
|
人工智能 搜索推荐 数据可视化
用 Python 制作简单小游戏教程:手把手教你开发猜数字游戏
本教程详细讲解了用Python实现经典猜数字游戏的完整流程,涵盖从基础规则到高级功能的全方位开发。内容包括游戏逻辑设计、输入验证与错误处理、猜测次数统计、难度选择、彩色输出等核心功能,并提供完整代码示例。同时,介绍了开发环境搭建及调试方法,帮助初学者快速上手。最后还提出了图形界面、网络对战、成就系统等扩展方向,鼓励读者自主创新,打造个性化游戏版本。适合Python入门者实践与进阶学习。
1013 1

推荐镜像

更多