NumPy 是 Python 的一个强大的科学计算库,它允许你创建各种类型的数组

简介: 【6月更文挑战第18天】**NumPy**是Python的科学计算库,用于创建和操作多维数组。常用数组生成方法包括:`np.array()`从列表转换为数组;`np.zeros()`生成全零矩阵;`np.ones()`创建全一矩阵;`np.linspace()`产生等差序列;`np.arange()`创建等差数列;以及`np.eye()`生成对角线为1的二维数组。更多方法可查阅NumPy官方文档。

NumPy 是 Python 的一个强大的科学计算库,它允许你创建各种类型的数组。以下是一些常见的 NumPy 数组生成方法:

  1. 使用 numpy.array() 函数:这是最常用的 NumPy 数组生成方法。它接受一个列表或其他序列作为参数,并将其转换为 NumPy 数组。

例如:

import numpy as np

arr = np.array([1, 2, 3])
print(arr)

输出结果:

[1, 2, 3]
  1. 使用 numpy.zeros() 函数:该函数创建一个全零的数组。

例如:

arr = np.zeros((3, 3))
print(arr)

输出结果:

[[0., 0., 0.],
 [0., 0., 0.],
 [0., 0., 0.]]
  1. 使用 numpy.ones() 函数:该函数创建一个全一的数组。

例如:

arr = np.ones((3, 3))
print(arr)

输出结果:

[[1., 1., 1.],
 [1., 1., 1.],
 [1., 1., 1.]]
  1. 使用 numpy.linspace() 函数:该函数创建一个均匀分布的数组。

例如:

arr = np.linspace(0, 10, 5)
print(arr)

输出结果:

[0.  2.5  5.  7.5 10. ]
  1. 使用 numpy.arange() 函数:该函数创建一个等差数列。

例如:

arr = np.arange(5)
print(arr)

输出结果:

[0, 1, 2, 3, 4]
  1. 使用 numpy.eye() 函数:该函数创建一个对角线上为 1 ,其余为 0 的二维数组。

例如:

arr = np.eye(3)
print(arr)

输出结果:

[[1., 0., 0.],
 [0., 1., 0.],
 [0., 0., 1.]]

以上只是 NumPy 数组生成方法的一部分,还有更多的方法,请参考 NumPy 官方文档进行学习。

相关文章
|
1月前
|
存储 Java 数据处理
(numpy)Python做数据处理必备框架!(一):认识numpy;从概念层面开始学习ndarray数组:形状、数组转置、数值范围、矩阵...
Numpy是什么? numpy是Python中科学计算的基础包。 它是一个Python库,提供多维数组对象、各种派生对象(例如掩码数组和矩阵)以及用于对数组进行快速操作的各种方法,包括数学、逻辑、形状操作、排序、选择、I/0 、离散傅里叶变换、基本线性代数、基本统计运算、随机模拟等等。 Numpy能做什么? numpy的部分功能如下: ndarray,一个具有矢量算术运算和复杂广播能力的快速且节省空间的多维数组 用于对整组数据进行快速运算的标准数学函数(无需编写循环)。 用于读写磁盘数据的工具以及用于操作内存映射文件的工具。 线性代数、随机数生成以及傅里叶变换功能。 用于集成由C、C++
295 0
|
2月前
|
存储 人工智能 测试技术
如何使用LangChain的Python库结合DeepSeek进行多轮次对话?
本文介绍如何使用LangChain结合DeepSeek实现多轮对话,测开人员可借此自动生成测试用例,提升自动化测试效率。
431 125
如何使用LangChain的Python库结合DeepSeek进行多轮次对话?
|
2月前
|
监控 数据可视化 数据挖掘
Python Rich库使用指南:打造更美观的命令行应用
Rich库是Python的终端美化利器,支持彩色文本、智能表格、动态进度条和语法高亮,大幅提升命令行应用的可视化效果与用户体验。
208 0
|
1月前
|
数据可视化 关系型数据库 MySQL
【可视化大屏】全流程讲解用python的pyecharts库实现拖拽可视化大屏的背后原理,简单粗暴!
本文详解基于Python的电影TOP250数据可视化大屏开发全流程,涵盖爬虫、数据存储、分析及可视化。使用requests+BeautifulSoup爬取数据,pandas存入MySQL,pyecharts实现柱状图、饼图、词云图、散点图等多种图表,并通过Page组件拖拽布局组合成大屏,支持多种主题切换,附完整源码与视频讲解。
212 4
【可视化大屏】全流程讲解用python的pyecharts库实现拖拽可视化大屏的背后原理,简单粗暴!
|
1月前
|
传感器 运维 前端开发
Python离群值检测实战:使用distfit库实现基于分布拟合的异常检测
本文解析异常(anomaly)与新颖性(novelty)检测的本质差异,结合distfit库演示基于概率密度拟合的单变量无监督异常检测方法,涵盖全局、上下文与集体离群值识别,助力构建高可解释性模型。
300 10
Python离群值检测实战:使用distfit库实现基于分布拟合的异常检测
|
1月前
|
Java 数据处理 索引
(numpy)Python做数据处理必备框架!(二):ndarray切片的使用与运算;常见的ndarray函数:平方根、正余弦、自然对数、指数、幂等运算;统计函数:方差、均值、极差;比较函数...
ndarray切片 索引从0开始 索引/切片类型 描述/用法 基本索引 通过整数索引直接访问元素。 行/列切片 使用冒号:切片语法选择行或列的子集 连续切片 从起始索引到结束索引按步长切片 使用slice函数 通过slice(start,stop,strp)定义切片规则 布尔索引 通过布尔条件筛选满足条件的元素。支持逻辑运算符 &、|。
148 0
|
3月前
|
机器学习/深度学习 API 异构计算
JAX快速上手:从NumPy到GPU加速的Python高性能计算库入门教程
JAX是Google开发的高性能数值计算库,旨在解决NumPy在现代计算需求下的局限性。它不仅兼容NumPy的API,还引入了自动微分、GPU/TPU加速和即时编译(JIT)等关键功能,显著提升了计算效率。JAX适用于机器学习、科学模拟等需要大规模计算和梯度优化的场景,为Python在高性能计算领域开辟了新路径。
349 0
JAX快速上手:从NumPy到GPU加速的Python高性能计算库入门教程
|
3月前
|
存储 数据采集 数据处理
Pandas与NumPy:Python数据处理的双剑合璧
Pandas与NumPy是Python数据科学的核心工具。NumPy以高效的多维数组支持数值计算,适用于大规模矩阵运算;Pandas则提供灵活的DataFrame结构,擅长处理表格型数据与缺失值。二者在性能与功能上各具优势,协同构建现代数据分析的技术基石。
341 0
|
机器学习/深度学习 数据处理 Python
从NumPy到Pandas:轻松转换Python数值库与数据处理利器
从NumPy到Pandas:轻松转换Python数值库与数据处理利器
326 1
|
机器学习/深度学习 数据处理 计算机视觉
NumPy实践宝典:Python高手教你如何轻松玩转数据处理!
【8月更文挑战第22天】NumPy是Python科学计算的核心库,专长于大型数组与矩阵运算,并提供了丰富的数学函数。首先需安装NumPy (`pip install numpy`)。之后可通过创建数组、索引与切片、执行数学与逻辑运算、变换数组形状及类型、计算统计量和进行矩阵运算等操作来实践学习。NumPy的应用范围广泛,从基础的数据处理到图像处理都能胜任,是数据科学领域的必备工具。
178 0

推荐镜像

更多