NumPy 是 Python 的一个强大的科学计算库,它允许你创建各种类型的数组

简介: 【6月更文挑战第18天】**NumPy**是Python的科学计算库,用于创建和操作多维数组。常用数组生成方法包括:`np.array()`从列表转换为数组;`np.zeros()`生成全零矩阵;`np.ones()`创建全一矩阵;`np.linspace()`产生等差序列;`np.arange()`创建等差数列;以及`np.eye()`生成对角线为1的二维数组。更多方法可查阅NumPy官方文档。

NumPy 是 Python 的一个强大的科学计算库,它允许你创建各种类型的数组。以下是一些常见的 NumPy 数组生成方法:

  1. 使用 numpy.array() 函数:这是最常用的 NumPy 数组生成方法。它接受一个列表或其他序列作为参数,并将其转换为 NumPy 数组。

例如:

import numpy as np

arr = np.array([1, 2, 3])
print(arr)

输出结果:

[1, 2, 3]
  1. 使用 numpy.zeros() 函数:该函数创建一个全零的数组。

例如:

arr = np.zeros((3, 3))
print(arr)

输出结果:

[[0., 0., 0.],
 [0., 0., 0.],
 [0., 0., 0.]]
  1. 使用 numpy.ones() 函数:该函数创建一个全一的数组。

例如:

arr = np.ones((3, 3))
print(arr)

输出结果:

[[1., 1., 1.],
 [1., 1., 1.],
 [1., 1., 1.]]
  1. 使用 numpy.linspace() 函数:该函数创建一个均匀分布的数组。

例如:

arr = np.linspace(0, 10, 5)
print(arr)

输出结果:

[0.  2.5  5.  7.5 10. ]
  1. 使用 numpy.arange() 函数:该函数创建一个等差数列。

例如:

arr = np.arange(5)
print(arr)

输出结果:

[0, 1, 2, 3, 4]
  1. 使用 numpy.eye() 函数:该函数创建一个对角线上为 1 ,其余为 0 的二维数组。

例如:

arr = np.eye(3)
print(arr)

输出结果:

[[1., 0., 0.],
 [0., 1., 0.],
 [0., 0., 1.]]

以上只是 NumPy 数组生成方法的一部分,还有更多的方法,请参考 NumPy 官方文档进行学习。

相关文章
|
3天前
|
SQL 并行计算 API
Dask是一个用于并行计算的Python库,它提供了类似于Pandas和NumPy的API,但能够在大型数据集上进行并行计算。
Dask是一个用于并行计算的Python库,它提供了类似于Pandas和NumPy的API,但能够在大型数据集上进行并行计算。
21 9
|
3天前
|
机器学习/深度学习 人工智能 数据挖掘
Numba是一个Python库,用于对Python代码进行即时(JIT)编译,以便在硬件上高效执行。
Numba是一个Python库,用于对Python代码进行即时(JIT)编译,以便在硬件上高效执行。
20 9
|
3天前
|
网络协议 安全 Shell
`nmap`是一个开源的网络扫描工具,用于发现网络上的设备和服务。Python的`python-nmap`库允许我们在Python脚本中直接使用`nmap`的功能。
`nmap`是一个开源的网络扫描工具,用于发现网络上的设备和服务。Python的`python-nmap`库允许我们在Python脚本中直接使用`nmap`的功能。
24 7
|
3天前
|
机器人 Shell 开发者
`roslibpy`是一个Python库,它允许非ROS(Robot Operating System)环境(如Web浏览器、移动应用等)与ROS环境进行交互。通过使用`roslibpy`,开发者可以编写Python代码来远程控制ROS节点,发布和订阅话题,以及调用服务。
`roslibpy`是一个Python库,它允许非ROS(Robot Operating System)环境(如Web浏览器、移动应用等)与ROS环境进行交互。通过使用`roslibpy`,开发者可以编写Python代码来远程控制ROS节点,发布和订阅话题,以及调用服务。
21 8
|
1天前
|
存储 索引 Python
NumPy 教程 之 NumPy 数组属性 1
NumPy教程介绍数组属性:秩表示维度,如一维数组秩为1,二维为2。轴(axis)定义了数组的线性方向,axis=0操縱列,axis=1操纵行。关键属性包括:ndim-秩,shape-维度大小,size-元素总数,dtype-数据类型,itemsize-元素字节大小,flags-内存信息,real/imag-复数部分,data-元素缓冲区。
11 5
|
3天前
|
自然语言处理 程序员 编译器
`pylatex`是一个Python库,用于生成LaTeX文档。LaTeX是一种用于高质量排版和打印的文档准备系统,特别适用于科学、技术和数学文档。
`pylatex`是一个Python库,用于生成LaTeX文档。LaTeX是一种用于高质量排版和打印的文档准备系统,特别适用于科学、技术和数学文档。
12 2
|
2天前
|
数据采集 数据挖掘 数据处理
Python数据分析加速器:深度挖掘Pandas与NumPy的高级功能
【7月更文挑战第14天】Python的Pandas和NumPy库是数据分析的核心工具。Pandas以其高效的数据处理能力,如分组操作和自定义函数应用,简化了数据清洗和转换。NumPy则以其多维数组和广播机制实现快速数值计算。两者协同工作,如在DataFrame与NumPy数组间转换进行预处理,提升了数据分析的效率和精度。掌握这两者的高级功能是提升数据科学技能的关键。**
7 0
|
3天前
|
存储 搜索推荐 算法
`surprise`是一个用于构建和分析推荐系统的Python库。
`surprise`是一个用于构建和分析推荐系统的Python库。
16 0
|
3天前
|
机器学习/深度学习 PyTorch TensorFlow
在深度学习中,数据增强是一种常用的技术,用于通过增加训练数据的多样性来提高模型的泛化能力。`albumentations`是一个强大的Python库,用于图像增强,支持多种图像变换操作,并且可以与深度学习框架(如PyTorch、TensorFlow等)无缝集成。
在深度学习中,数据增强是一种常用的技术,用于通过增加训练数据的多样性来提高模型的泛化能力。`albumentations`是一个强大的Python库,用于图像增强,支持多种图像变换操作,并且可以与深度学习框架(如PyTorch、TensorFlow等)无缝集成。
8 0
|
11天前
|
机器学习/深度学习 数据可视化 搜索推荐
Python在社交媒体分析中扮演关键角色,借助Pandas、NumPy、Matplotlib等工具处理、可视化数据及进行机器学习。
【7月更文挑战第5天】Python在社交媒体分析中扮演关键角色,借助Pandas、NumPy、Matplotlib等工具处理、可视化数据及进行机器学习。流程包括数据获取、预处理、探索、模型选择、评估与优化,以及结果可视化。示例展示了用户行为、话题趋势和用户画像分析。Python的丰富生态使得社交媒体洞察变得高效。通过学习和实践,可以提升社交媒体分析能力。
28 1