Python 中怎样做数据交换格式

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
RDS MySQL Serverless 高可用系列,价值2615元额度,1个月
简介: **摘要:**本文介绍了JSON在数据交换和存储中的重要性,因其易读性和灵活性。Python使用内置的`json`模块来操作JSON文件,包括序列化和反序列化。`json.loads()`用于将JSON字符串转换为Python对象,而`json.load()`从JSON文件中加载数据。相反,`json.dumps()`将Python对象转换为JSON字符串,`json.dump()`则写入到文件。文中还展示了`json.dumps()`的不同参数,如`indent`和`sort_keys`,用于美化输出和排序。

在现代的数据交换和存储中,JSON(JavaScript Object Notation)作为一种轻量级的数据交换格式,备受青睐。它不仅易于阅读和理解,还可以灵活地表达和存储高维数据。本文将介绍如何在 Python 中操作 JSON 文件,实现数据的序列化和反序列化。

1. JSON 数据格式

JSON 格式采用键值对的方式表达信息。它的值可以是对象、数组、字符串、整数、浮点数、布尔型或空值。下面是一个 JSON 数据的例子:

json

复制代码

{
    "name": "kira",
    "age": 18,
    "hobby": ["唱歌", "吹牛"],
    "friends": [
        {"name": "刘德华"},
        {"name": "梁朝伟"}
    ]
}

在实际工作中,我们可以根据需要扩展和定制这种数据格式,以适应不同的场景和业务需求。

2. Python 操作 JSON 文件

Python 提供了内置的 json 模块,用于解析和操作 JSON 数据。

2.1 JSON 反序列化为 Python 对象

将 JSON 数据反序列化为 Python 对象是常见的操作,可以利用 json.loads() 方法实现。

swift

复制代码

import json

json_str = '{"name":"kira","age":18}'
print(json_str, type(json_str))

load_data = json.loads(json_str)
print(load_data, type(load_data))

运行结果:

arduino

复制代码

{"name":"kira","age":18} <class 'str'>
{'name': 'kira', 'age': 18} <class 'dict'>

此外,如果需要从 JSON 文件中加载数据,可以使用 json.load() 方法。

python

复制代码

import json

with open('kira.json', 'r', encoding='utf-8') as f:
    load_data = json.load(f)
    print(load_data, type(load_data))

运行结果:

arduino

复制代码

{'name': 'kira', 'age': 18, 'hobby': ['唱歌', '吹牛'], 'friends': [{'name': '刘德华'}, {'name': '梁朝伟'}]} <class 'dict'>

2.2 Python 序列化为 JSON

与反序列化相对应,Python 可以将对象序列化为 JSON 数据。json.dumps() 方法可以实现这一功能。

python

复制代码

import json

data = {
    "name": "kira",
    "age": 18,
    "hobby": ["唱歌", "吹牛"],
    "friends": [
        {"name": "刘德华"},
        {"name": "梁朝伟"}
    ]
}
json_str = json.dumps(data)
print(json_str)

print(json.dumps(data, ensure_ascii=False))
print(json.dumps(data, ensure_ascii=False, indent=4))
print(json.dumps(data, ensure_ascii=False, indent=4, sort_keys=True))

运行结果:

json

复制代码

{"name": "kira", "age": 18, "hobby": ["\u5531\u6b4c", "\u5439\u725b"], "friends": [{"name": "\u5218\u5fb7\u534e"}, {"name": "\u6881\u671d\u4f1f"}]}
{"name": "kira", "age": 18, "hobby": ["唱歌", "吹牛"], "friends": [{"name": "刘德华"}, {"name": "梁朝伟"}]}
{
    "name": "kira",
    "age": 18,
    "hobby": [
        "唱歌",
        "吹牛"
    ],
    "friends": [
        {
            "name": "刘德华"
        },
        {
            "name": "梁朝伟"
        }
    ]
}
{
    "age": 18,
    "friends": [
        {
            "name": "刘德华"
        },
        {
            "name": "梁朝伟"
        }
    ],
    "hobby": [
        "唱歌",
        "吹牛"
    ],
    "name": "kira"
}

如果需要将 Python 对象序列化后写入 JSON 文件,可以使用 json.dump() 方法。

kotlin

复制代码

import json

data = {
    "name": "kira",
    "age": 18,
    "hobby": ["唱歌", "吹牛"],
    "friends": [
        {"name": "刘德华"},
        {"name": "梁朝伟"}
    ]
}

with open('first.json', 'w', encoding='utf-8') as f:
    json.dump(data, f, ensure_ascii=False, indent=4)

通过上述方法,我们可以轻松地在 Python 中进行 JSON 数据的序列化和反序列化操作。无论是数据交换还是数据存储,JSON 都是一种简单而高效的选择。在实际工作中,我们可以根据具体需求灵活运用 JSON 的优势,提高工作效率。

3 工作中的常见场景

3.1 网络请求和响应

在web开发中,客户端和服务器之间得数据传输通常使用JSON格式。客户端可以将数据封装成 JSON 字符串,通过网络请求发送给服务器。服务器接收到 JSON 数据后,可以使用 Python 中的 JSON 模块将其反序列化为 Python 对象进行处理。处理完成后,服务器可以将结果序列化为 JSON 数据,发送给客户端作为响应。例如:

服务器端(Python):

ini

复制代码

from flask import Flask, jsonify, request

app = Flask(__name__)

@app.route('/api/data', methods=['POST'])
def receive_data():
    data = request.get_json()
    # 对接收到的数据进行处理
    processed_data = process_data(data)
    # 将处理后的数据作为 JSON 响应返回给客户端
    return jsonify(processed_data)

def process_data(data):
    # 在这里进行数据处理的逻辑
    # ...
    return processed_data

if __name__ == '__main__':
    app.run()

客户端(JavaScript):

javascript

复制代码

const data = {
  name: '测试玩家勇哥',
  age: 18,
  hobby: ['唱歌', '吹牛'],
};

fetch('/api/data', {
  method: 'POST',
  headers: {
    'Content-Type': 'application/json',
  },
  body: JSON.stringify(data),
})
  .then(response => response.json())
  .then(responseData => {
    // 处理从服务器返回的响应数据
    console.log(responseData);
  });

上述就是客户端语服务器端之间使用JSON数据传输交互的常见场景。

3.2 配置文件管理

JSON 格式数据非常适合用于存储和管理配置文件,当然数据文件的使用之前勇哥有一篇文章详细介绍过,忘记了的小伙伴可以去复习一下,传送门:python常用的配置文件详谈,下面举个荔枝:

读取配置文件:

ini

复制代码

import json

def read_config_file(file_path):
    with open(file_path, 'r') as f:
        config_data = json.load(f)
    return config_data

# 读取配置文件
config = read_config_file('config.json')

# 获取配置项的值
db_host = config['database']['host']
db_port = config['database']['port']

修改配置文件:

python

复制代码

import json

def update_config_file(file_path, new_config):
    with open(file_path, 'w') as f:
        json.dump(new_config, f, indent=4)

# 读取配置文件
config = read_config_file('config.json')

# 修改配置项的值
config['database']['port'] = 5432

# 更新配置文件
update_config_file('config.json', config)

数据持久化存储也是可以写道JSON文件中的,本文就不做过多的描写了。


转载来源:https://juejin.cn/post/7248623840316932156

相关文章
|
1月前
|
数据采集 Web App开发 数据可视化
Python零基础爬取东方财富网股票行情数据指南
东方财富网数据稳定、反爬宽松,适合爬虫入门。本文详解使用Python抓取股票行情数据,涵盖请求发送、HTML解析、动态加载处理、代理IP切换及数据可视化,助你快速掌握金融数据爬取技能。
814 1
|
1月前
|
Java 数据挖掘 数据处理
(Pandas)Python做数据处理必选框架之一!(一):介绍Pandas中的两个数据结构;刨析Series:如何访问数据;数据去重、取众数、总和、标准差、方差、平均值等;判断缺失值、获取索引...
Pandas 是一个开源的数据分析和数据处理库,它是基于 Python 编程语言的。 Pandas 提供了易于使用的数据结构和数据分析工具,特别适用于处理结构化数据,如表格型数据(类似于Excel表格)。 Pandas 是数据科学和分析领域中常用的工具之一,它使得用户能够轻松地从各种数据源中导入数据,并对数据进行高效的操作和分析。 Pandas 主要引入了两种新的数据结构:Series 和 DataFrame。
291 0
|
27天前
|
JSON 算法 API
Python采集淘宝商品评论API接口及JSON数据返回全程指南
Python采集淘宝商品评论API接口及JSON数据返回全程指南
|
1月前
|
JSON API 数据安全/隐私保护
Python采集淘宝拍立淘按图搜索API接口及JSON数据返回全流程指南
通过以上流程,可实现淘宝拍立淘按图搜索的完整调用链路,并获取结构化的JSON商品数据,支撑电商比价、智能推荐等业务场景。
|
3月前
|
机器学习/深度学习 新能源 调度
电力系统短期负荷预测(Python代码+数据+详细文章讲解)
电力系统短期负荷预测(Python代码+数据+详细文章讲解)
280 1
|
3月前
|
缓存 API 网络架构
淘宝item_search_similar - 搜索相似的商品API接口,用python返回数据
淘宝联盟开放平台中,可通过“物料优选接口”(taobao.tbk.dg.optimus.material)实现“搜索相似商品”功能。该接口支持根据商品 ID 获取相似推荐商品,并返回商品信息、价格、优惠等数据,适用于商品推荐、比价等场景。本文提供基于 Python 的实现示例,包含接口调用、数据解析及结果展示。使用时需配置淘宝联盟的 appkey、appsecret 和 adzone_id,并注意接口调用频率限制和使用规范。
|
2月前
|
存储 监控 API
Python实战:跨平台电商数据聚合系统的技术实现
本文介绍如何通过标准化API调用协议,实现淘宝、京东、拼多多等电商平台的商品数据自动化采集、清洗与存储。内容涵盖技术架构设计、Python代码示例及高阶应用(如价格监控系统),提供可直接落地的技术方案,帮助开发者解决多平台数据同步难题。
|
2月前
|
存储 JSON 算法
Python集合:高效处理无序唯一数据的利器
Python集合是一种高效的数据结构,具备自动去重、快速成员检测和无序性等特点,适用于数据去重、集合运算和性能优化等场景。本文通过实例详解其用法与技巧。
122 0
|
4月前
|
存储 Web App开发 前端开发
Python + Requests库爬取动态Ajax分页数据
Python + Requests库爬取动态Ajax分页数据
|
4月前
|
JSON API 数据格式
Python采集京东商品评论API接口示例,json数据返回
下面是一个使用Python采集京东商品评论的完整示例,包括API请求、JSON数据解析

推荐镜像

更多