实时计算 Flink版产品使用问题之如何使用全量checkpoint

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
简介: 实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。

问题一:flinkcdc 社区的钉钉群满了。还有其他的可以加入吗谢谢

如题。想进入学习一下



参考答案:

可以考虑加入Flink CDC社区的其他在线交流平台。以下是一些建议:

  1. GitHub:Flink CDC项目在GitHub上有官方的仓库,您可以通过关注该项目来获取最新的动态和参与讨论。同时,也可以在GitHub上找到相关的Issue讨论和Pull Request,这是与社区成员交流技术问题的好方式。
  2. 邮件列表:很多开源项目都会有邮件列表,用于发布通知和讨论技术问题。您可以订阅Flink CDC的邮件列表,这样可以及时收到社区的最新信息。
  3. 论坛:一些技术论坛可能会有Flink CDC的讨论区或者专栏,您可以在这些论坛上提问和分享经验。
  4. 技术博客和文章:关注那些专注于Flink CDC的技术博客和文章,通常作者会在文章中提供联系方式或留言板块,供读者提问和交流。
  5. 社交媒体:在LinkedIn、Twitter等社交媒体上关注Flink CDC社区的官方账号,这些平台有时会发布关于社区活动的信息。
  6. 技术会议和Meetup:参加与Flink CDC相关的技术会议、Meetup活动,这些活动是与社区成员面对面交流的好机会。
  7. 官方网站和资源:访问Flink CDC的官方网站,查看是否有其他资源或者指引可以帮助您更好地了解和使用Flink CDC。

总之,通过上述途径,您应该能够找到适合您学习和交流的平台。同时,保持对社区动态的关注,也许未来会有新的钉钉群开放。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/602428



问题二:flinkcdc3.0是否支持全量的checkpoint?

flinkcdc3.0是否支持全量的checkpoint?



参考答案:

支持的。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/602312



问题三:Flink这种场景中的,第四步将 状态存储从内存换成rockdbs之后,还能扛得住吗?

第一层1个 flink sql 任务是将所有跟订单id有关的业务表 进行 10s的窗口去重获取到订单id; 第二层7个 flink sql任务,根据订单id分别查询对应的表,获取到宽表所需要的对应字段,分别发往下游的kafka中,第三层1个 flink sql任务,都是消费上面的kafka, 分别对7种主题的订单数据进行row_number()获取对应的 最新的订单主题数据,然后group by打宽到订单维度的 大宽表,将宽表落到clickhosue 并发送到kafka ;第四层 3个flink sql任务,对上游大宽表对应的 kafka消息 的 订单数据进行row_number()获取对应的 最新的订单宽表数据,按照天,周,月进行聚合,聚合表落到clickhouse表; Flink这种场景中的,第四步将 状态存储从内存换成rockdbs之后,还能扛得住吗?



参考答案:

压力会比较大,你用的云产品吗?云上gemini表现会好一些。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/601803



问题四:flink的状态后端用rockdbs性能怎么样?我目前用内存做状态存储,到我状态太大了,上百G了。

flink的状态后端用rockdbs性能怎么样?我目前用内存做状态存储,到我状态太大了,上百G了。



参考答案:

开源默认就是rocksdb,云上是Gemini。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/601802



问题五:在Flink什么是打宽DWD层?

在Flink什么是打宽DWD层?



参考答案:

打宽DWD层是数据仓库设计中的一个概念,在实时计算Flink产品交流群的“里程碑0 demo”文档中,它指的是将原始明细数据表(如orders和orders_pay)通过JOIN操作与维度表(如product_catalog)进行关联,形成一个包含更多业务信息的宽表,即dwd_orders。这个过程能够在一个表中整合多个表的相关信息,便于后续的分析和计算,同时也为减少JOIN操作、提高查询效率在物理层面上做了优化。在本例中,“打宽”是指增加了如order_product_catalog_name等额外维度字段到订单的明细表中,使得该表能够支持更丰富的业务查询和实时指标计算需求。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/601801

相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
Linux入门到精通
本套课程是从入门开始的Linux学习课程,适合初学者阅读。由浅入深案例丰富,通俗易懂。主要涉及基础的系统操作以及工作中常用的各种服务软件的应用、部署和优化。即使是零基础的学员,只要能够坚持把所有章节都学完,也一定会受益匪浅。
相关文章
|
26天前
|
消息中间件 Java 关系型数据库
实时计算 Flink版操作报错合集之从 PostgreSQL 读取数据并写入 Kafka 时,遇到 "initial slot snapshot too large" 的错误,该怎么办
在使用实时计算Flink版过程中,可能会遇到各种错误,了解这些错误的原因及解决方法对于高效排错至关重要。针对具体问题,查看Flink的日志是关键,它们通常会提供更详细的错误信息和堆栈跟踪,有助于定位问题。此外,Flink社区文档和官方论坛也是寻求帮助的好去处。以下是一些常见的操作报错及其可能的原因与解决策略。
923 0
|
26天前
|
存储 SQL 关系型数据库
实时计算 Flink版操作报错合集之按时间恢复时,报错:在尝试读取binlog时发现所需的binlog位置不再可用,该怎么办
在使用实时计算Flink版过程中,可能会遇到各种错误,了解这些错误的原因及解决方法对于高效排错至关重要。针对具体问题,查看Flink的日志是关键,它们通常会提供更详细的错误信息和堆栈跟踪,有助于定位问题。此外,Flink社区文档和官方论坛也是寻求帮助的好去处。以下是一些常见的操作报错及其可能的原因与解决策略。
716 0
|
19天前
|
SQL 存储 NoSQL
贝壳找房基于Flink+Paimon进行全量数据实时分组排序的实践
本文投稿自贝壳家装数仓团队,在结合家装业务场景下所探索出的一种基于 Flink+Paimon 的排序方案。这种方案可以在实时环境对全量数据进行准确的分组排序,同时减少对内存资源的消耗。在这一方案中,引入了“事件时间分段”的概念,以避免 Flink State 中冗余数据对排序结果的干扰,在保证排序结果准确性的同时,减少了对内存的消耗。并且基于数据湖组件 Paimon 的聚合模型和 Audit Log 数据在数据湖内构建了拉链表,为排序结果提供了灵活的历史数据基础。
28622 0
贝壳找房基于Flink+Paimon进行全量数据实时分组排序的实践
|
26天前
|
监控 Oracle 关系型数据库
实时计算 Flink版操作报错合集之在配置连接时,添加了scan.startup.mode参数后,出现报错。是什么导致的
在使用实时计算Flink版过程中,可能会遇到各种错误,了解这些错误的原因及解决方法对于高效排错至关重要。针对具体问题,查看Flink的日志是关键,它们通常会提供更详细的错误信息和堆栈跟踪,有助于定位问题。此外,Flink社区文档和官方论坛也是寻求帮助的好去处。以下是一些常见的操作报错及其可能的原因与解决策略。
816 0
|
26天前
|
消息中间件 Oracle 关系型数据库
实时计算 Flink版操作报错合集之连接RabbitMQ时遇到Could not find any factory for identifier 'rabbitmq' that implements 'org.apache.flink.table.factories.DynamicTableFactory'错误,该怎么办
在使用实时计算Flink版过程中,可能会遇到各种错误,了解这些错误的原因及解决方法对于高效排错至关重要。针对具体问题,查看Flink的日志是关键,它们通常会提供更详细的错误信息和堆栈跟踪,有助于定位问题。此外,Flink社区文档和官方论坛也是寻求帮助的好去处。以下是一些常见的操作报错及其可能的原因与解决策略。
395 0
|
26天前
|
SQL 关系型数据库 MySQL
实时计算 Flink版操作报错合集之CDC任务在异常后整个record sent从0初始化开始,是什么导致的
在使用实时计算Flink版过程中,可能会遇到各种错误,了解这些错误的原因及解决方法对于高效排错至关重要。针对具体问题,查看Flink的日志是关键,它们通常会提供更详细的错误信息和堆栈跟踪,有助于定位问题。此外,Flink社区文档和官方论坛也是寻求帮助的好去处。以下是一些常见的操作报错及其可能的原因与解决策略。
518 0
|
26天前
|
Java 关系型数据库 流计算
实时计算 Flink版操作报错合集之配置cats进行从MySQL到StarRocks的数据同步任务时遇到报错,该怎么办
在使用实时计算Flink版过程中,可能会遇到各种错误,了解这些错误的原因及解决方法对于高效排错至关重要。针对具体问题,查看Flink的日志是关键,它们通常会提供更详细的错误信息和堆栈跟踪,有助于定位问题。此外,Flink社区文档和官方论坛也是寻求帮助的好去处。以下是一些常见的操作报错及其可能的原因与解决策略。
307 0
|
26天前
|
消息中间件 资源调度 Java
实时计算 Flink版操作报错合集之遇到了缺少包的错误,已经添加了相应的 jar 包,仍然出现同样的报错,该怎么解决
在使用实时计算Flink版过程中,可能会遇到各种错误,了解这些错误的原因及解决方法对于高效排错至关重要。针对具体问题,查看Flink的日志是关键,它们通常会提供更详细的错误信息和堆栈跟踪,有助于定位问题。此外,Flink社区文档和官方论坛也是寻求帮助的好去处。以下是一些常见的操作报错及其可能的原因与解决策略。
663 2
|
26天前
|
SQL JSON 数据库
实时计算 Flink版操作报错合集之写入Hudi时,遇到从 COW(Copy-On-Write)表类型转换为 MOR(Merge-On-Read)表类型时报字段错误,该怎么办
在使用实时计算Flink版过程中,可能会遇到各种错误,了解这些错误的原因及解决方法对于高效排错至关重要。针对具体问题,查看Flink的日志是关键,它们通常会提供更详细的错误信息和堆栈跟踪,有助于定位问题。此外,Flink社区文档和官方论坛也是寻求帮助的好去处。以下是一些常见的操作报错及其可能的原因与解决策略。
|
26天前
|
关系型数据库 数据库 流计算
实时计算 Flink版操作报错合集之在使用Flink CDC TiDB Connector时,无法获取到事件,该怎么办
在使用实时计算Flink版过程中,可能会遇到各种错误,了解这些错误的原因及解决方法对于高效排错至关重要。针对具体问题,查看Flink的日志是关键,它们通常会提供更详细的错误信息和堆栈跟踪,有助于定位问题。此外,Flink社区文档和官方论坛也是寻求帮助的好去处。以下是一些常见的操作报错及其可能的原因与解决策略。
379 0

相关产品

  • 实时计算 Flink版