实时计算 Flink版产品使用问题之读取数据太慢该如何优化

本文涉及的产品
实时计算 Flink 版,1000CU*H 3个月
简介: 实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。

问题一:Flink CDC里批量缓存这个哪里做调整?

Flink CDC里批量缓存这个哪里做调整?



参考答案:

可以参考图片



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/607319



问题二:Flink CDC里读取太慢了如何优化的啊?

Flink CDC里读取太慢了如何优化的啊?



参考答案:

直接手动做checkpoint。换2.3以上。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/607317



问题三:Flink CDC里抽取mongodb的数据时,所用的流量直接到158mb/s,有没有参数限制?

Flink CDC里抽取mongodb的数据时,所用的流量直接到158mb/s,请问这种有没有参数限制一下啊?



参考答案:

在 Apache Flink CDC 中抽取 MongoDB 数据时,如果发现抽取流量非常高,达到158MB/s的程度,确实需要对其进行限制以防止网络带宽耗尽或其他资源瓶颈。Flink CDC for MongoDB 提供了一个参数可以用来限制数据抽取速率:

参数名称:flink.cdc.consumer.max-events-per-second 或类似的配置项(具体名称可能会随着Flink版本更新有所变动)

这个参数用于限制MongoDB Source消费者每秒处理的事件数量,从而间接控制流量。通过合理设置这个参数,可以限制从MongoDB抽取数据的速率,避免数据传输过快导致网络拥塞或系统压力过大。

请根据实际的网络状况、目标系统处理能力以及业务需求来调整此参数,确保抽取速率在一个既能充分利用资源又不至于造成压力的平衡点上。同时,也可以考虑结合其他Flink任务级别的并行度调整和背压机制来共同控制数据流速。记得查阅Flink CDC官方文档获取最新的配置指南。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/607314



问题四:现在flink 官网发布的flink cdc只有3.0以上版本吗?其他版本去哪了?

现在flink 官网发布的flink cdc只有3.0以上版本吗?其他版本去哪了?



参考答案:

迁移到apache了。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/607310



问题五:Flink CDC里全量阶段开了之后,checkpoint的文件过大,现在不知道怎么优化了?

Flink CDC里全量阶段开了之后,checkpoint的文件过大,现在不知道怎么优化了。而且ck过大之后重启,长时间无法恢复正常运行。怎么控制全增量切换?



参考答案:

我用的阿里云flink在停止任务是可以保存savepoint,再次启动可以基于这个。这样应该能做到全量阶段多加点资源加点并发,增量阶段重启少给点资源就好了,全增量切换是自动切换的。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/607309

相关实践学习
基于Hologres+Flink搭建GitHub实时数据大屏
通过使用Flink、Hologres构建实时数仓,并通过Hologres对接BI分析工具(以DataV为例),实现海量数据实时分析.
实时计算 Flink 实战课程
如何使用实时计算 Flink 搞定数据处理难题?实时计算 Flink 极客训练营产品、技术专家齐上阵,从开源 Flink功能介绍到实时计算 Flink 优势详解,现场实操,5天即可上手! 欢迎开通实时计算 Flink 版: https://cn.aliyun.com/product/bigdata/sc Flink Forward Asia 介绍: Flink Forward 是由 Apache 官方授权,Apache Flink Community China 支持的会议,通过参会不仅可以了解到 Flink 社区的最新动态和发展计划,还可以了解到国内外一线大厂围绕 Flink 生态的生产实践经验,是 Flink 开发者和使用者不可错过的盛会。 去年经过品牌升级后的 Flink Forward Asia 吸引了超过2000人线下参与,一举成为国内最大的 Apache 顶级项目会议。结合2020年的特殊情况,Flink Forward Asia 2020 将在12月26日以线上峰会的形式与大家见面。
相关文章
|
4月前
|
SQL 人工智能 JSON
Flink 2.1 SQL:解锁实时数据与AI集成,实现可扩展流处理
简介:本文整理自阿里云高级技术专家李麟在Flink Forward Asia 2025新加坡站的分享,介绍了Flink 2.1 SQL在实时数据处理与AI融合方面的关键进展,包括AI函数集成、Join优化及未来发展方向,助力构建高效实时AI管道。
791 43
|
4月前
|
SQL 人工智能 JSON
Flink 2.1 SQL:解锁实时数据与AI集成,实现可扩展流处理
本文整理自阿里云的高级技术专家、Apache Flink PMC 成员李麟老师在 Flink Forward Asia 2025 新加坡[1]站 —— 实时 AI 专场中的分享。将带来关于 Flink 2.1 版本中 SQL 在实时数据处理和 AI 方面进展的话题。
286 0
Flink 2.1 SQL:解锁实时数据与AI集成,实现可扩展流处理
|
8月前
|
存储 消息中间件 Kafka
基于 Flink 的中国电信星海时空数据多引擎实时改造
本文整理自中国电信集团大数据架构师李新虎老师在Flink Forward Asia 2024的分享,围绕星海时空智能系统展开,涵盖四个核心部分:时空数据现状、实时场景多引擎化、典型应用及未来展望。系统日处理8000亿条数据,具备亚米级定位能力,通过Flink多引擎架构解决数据膨胀与响应时效等问题,优化资源利用并提升计算效率。应用场景包括运动状态识别、个体行为分析和群智感知,未来将推进湖仓一体改造与三维时空服务体系建设,助力数字化转型与智慧城市建设。
815 3
基于 Flink 的中国电信星海时空数据多引擎实时改造
|
4月前
|
存储 分布式计算 数据处理
「48小时极速反馈」阿里云实时计算Flink广招天下英雄
阿里云实时计算Flink团队,全球领先的流计算引擎缔造者,支撑双11万亿级数据处理,推动Apache Flink技术发展。现招募Flink执行引擎、存储引擎、数据通道、平台管控及产品经理人才,地点覆盖北京、杭州、上海。技术深度参与开源核心,打造企业级实时计算解决方案,助力全球企业实现毫秒洞察。
482 0
「48小时极速反馈」阿里云实时计算Flink广招天下英雄
|
4月前
|
SQL 关系型数据库 Apache
从 Flink 到 Doris 的实时数据写入实践 —— 基于 Flink CDC 构建更实时高效的数据集成链路
本文将深入解析 Flink-Doris-Connector 三大典型场景中的设计与实现,并结合 Flink CDC 详细介绍了整库同步的解决方案,助力构建更加高效、稳定的实时数据处理体系。
1790 0
从 Flink 到 Doris 的实时数据写入实践 —— 基于 Flink CDC 构建更实时高效的数据集成链路
|
5月前
|
存储 消息中间件 搜索推荐
京东零售基于Flink的推荐系统智能数据体系
摘要:本文整理自京东零售技术专家张颖老师,在 Flink Forward Asia 2024 生产实践(二)专场中的分享,介绍了基于Flink构建的推荐系统数据,以及Flink智能体系带来的智能服务功能。内容分为以下六个部分: 推荐系统架构 索引 样本 特征 可解释 指标 Tips:关注「公众号」回复 FFA 2024 查看会后资料~
348 1
京东零售基于Flink的推荐系统智能数据体系
|
7月前
|
SQL 关系型数据库 MySQL
Flink CDC 3.4 发布, 优化高频 DDL 处理,支持 Batch 模式,新增 Iceberg 支持
Apache Flink CDC 3.4.0 版本正式发布!经过4个月的开发,此版本强化了对高频表结构变更的支持,新增 batch 执行模式和 Apache Iceberg Sink 连接器,可将数据库数据全增量实时写入 Iceberg 数据湖。51位贡献者完成了259次代码提交,优化了 MySQL、MongoDB 等连接器,并修复多个缺陷。未来 3.5 版本将聚焦脏数据处理、数据限流等能力及 AI 生态对接。欢迎下载体验并提出反馈!
1204 1
Flink CDC 3.4 发布, 优化高频 DDL 处理,支持 Batch 模式,新增 Iceberg 支持
|
运维 数据处理 数据安全/隐私保护
阿里云实时计算Flink版测评报告
该测评报告详细介绍了阿里云实时计算Flink版在用户行为分析与标签画像中的应用实践,展示了其毫秒级的数据处理能力和高效的开发流程。报告还全面评测了该服务在稳定性、性能、开发运维及安全性方面的卓越表现,并对比自建Flink集群的优势。最后,报告评估了其成本效益,强调了其灵活扩展性和高投资回报率,适合各类实时数据处理需求。
|
存储 分布式计算 流计算
实时计算 Flash – 兼容 Flink 的新一代向量化流计算引擎
本文介绍了阿里云开源大数据团队在实时计算领域的最新成果——向量化流计算引擎Flash。文章主要内容包括:Apache Flink 成为业界流计算标准、Flash 核心技术解读、性能测试数据以及在阿里巴巴集团的落地效果。Flash 是一款完全兼容 Apache Flink 的新一代流计算引擎,通过向量化技术和 C++ 实现,大幅提升了性能和成本效益。
3611 73
实时计算 Flash – 兼容 Flink 的新一代向量化流计算引擎

相关产品

  • 实时计算 Flink版