决策树算法

简介: 决策树算法

谷歌笔记本(可选)


from google.colab import drive
drive.mount("/content/drive")
output

Mounted at /content/drive

决策树


  • 优点:计算复杂度不高,输出结果易于理解,对中间值的缺失不敏感,可以处理不相关特征数据
  • 缺点:可能产生过度匹配的问题
  • 适用数据类型:数值型和标称型

决策树的一般流程

(1)收集数据

(2)准备数据

(3)分析数据

(4)训练算法

(5)测试算法

(6)使用算法

信息增益

# 计算给定数据集的香农熵
from math import log
def calcShannonEnt(dataSet):
  numEntries = len(dataSet)
  labelCounts = {}
  for featVec in dataSet:
    currentLabel = featVec[-1]
    if currentLabel not in labelCounts.keys():
      labelCounts[currentLabel] = 0
    labelCounts[currentLabel] += 1
  shannonEnt = 0
  for key in labelCounts:
    prob = float(labelCounts[key]) / numEntries
    shannonEnt -= prob * log(prob, 2)
  return shannonEnt
def createDataSet():
  dataSet = [[1, 1, 'yes'],
             [1, 1, 'yes'],
             [1, 0, 'no'],
             [0, 1, 'no'],
             [0, 1, 'no']]
  labels = ['no surfacing', 'flippers']
  return dataSet, labels
myDat, labels = createDataSet()
myDat, labels
output

([[1, 1, 'yes'], [1, 1, 'yes'], [1, 0, 'no'], [0, 1, 'no'], [0, 1, 'no']],
 ['no surfacing', 'flippers'])
calcShannonEnt(myDat)
output
0.9709505944546686
myDat[0][-1] = 'maybe'
myDat

划分数据集

# 按照给定特征划分数据集
def splitDataSet(dataSet, axis, value):
  retDataSet = []
  for featVec in dataSet:
    if featVec[axis] == value:
      reducedFeatVec = featVec[:axis]
      reducedFeatVec.extend(featVec[axis+1:])
      retDataSet.append(reducedFeatVec)
  return retDataSet
myDat, labels = createDataSet()
splitDataSet(myDat, 0, 1)

output

[[1, 'yes'], [1, 'yes'], [0, 'no']]

myDat, labels = createDataSet()
calcShannonEnt(myDat)

output

0.9709505944546686

# 选择最好的数据集划分方式
def chooseBestFeatureToSplit(dataSet):
  numFeatures = len(dataSet[0]) - 1   # 2
  baseEntropy = calcShannonEnt(dataSet)  # 0.9709505944546686
  bestInfoGain = 0
  bestFeature = -1
  for i in range(numFeatures):
    featList = [example[i] for example in dataSet]
    uniqueVals = set(featList)
    newEntropy = 0
    for value in uniqueVals:
      subDataSet = splitDataSet(dataSet, i, value)
      prob = len(subDataSet) / float(len(dataSet))
      newEntropy += prob * calcShannonEnt(subDataSet)
    infoGain = baseEntropy - newEntropy
    if(infoGain > bestInfoGain):
      bestInfoGain = infoGain
      bestFeature = i
  return bestFeature
chooseBestFeatureToSplit(myDat)

output

0

递归构建决策树

import operator
 
def majorityCnt(classList):
  classCount={}
  for vote in classList:
    if vote not in classCount.keys():
      classCount[vote] = 0
    classCount[vote] += 1
  sortedClassCount = sorted(classCount.items(), key=operator.itemgetter(1), reverse=True)
  return sortedClassCount[0][0]
# 创建树的代码
def createTree(dataSet, labels):
  classList = [example[-1] for example in dataSet]
  if classList.count(classList[0]) == len(classList):
    return classList[0]
  if len(dataSet[0]) == 1:
    return majorityCnt(classList)
  bestFeat = chooseBestFeatureToSplit(dataSet)
  bestFeatLabel = labels[bestFeat]
  myTree = {bestFeatLabel:{}}
  del(labels[bestFeat])
  featValues = [example[bestFeat] for example in dataSet]
  uniqueVals = set(featValues)
  for value in uniqueVals:
    subLabels = labels[:]
    myTree[bestFeatLabel][value] = createTree(splitDataSet(dataSet, bestFeat, value), subLabels)
  return myTree
myDat, labels = createDataSet()
myTree = createTree(myDat, labels)
myTree

output

{'no surfacing': {0: 'no', 1: {'flippers': {0: 'no', 1: 'yes'}}}}


使用Matplotlib注解绘制树形图


Matplotlib注解

# 使用文本注解绘制树节点
import matplotlib.pyplot as plt
import warnings
warnings.filterwarnings("ignore")
decisionNode = dict(boxstyle="sawtooth", fc="0.8")
leafNode = dict(boxstyle="round4", fc="0.8")
arrow_args = dict(arrowstyle="<-")
def plotNode(nodeTxt, centerPt, parentPt, nodeType):
  createPlot.ax1.annotate(nodeTxt, xy=parentPt, xycoords='axes fraction',
                          xytext=centerPt, textcoords='axes fraction',
                          va='center', ha='center', bbox=nodeType, arrowprops=arrow_args)
def createPlot():
  fig = plt.figure(1, facecolor='white')
  fig.clf()
  createPlot.ax1 = plt.subplot(111, frameon=False)
  plotNode('leaf01', (0.5, 0.1), (0.1, 0.5), decisionNode)
  plotNode('leaf02', (0.8, 0.1), (0.3, 0.8), leafNode)
  plt.show()
createPlot()

output

构造注解树

# 获取叶节点的数目
def getNumLeafs(myTree):
  numLeafs = 0
  firstStr = list(myTree.keys())[0]
  secondDict = myTree[firstStr]
  for key in secondDict.keys():
    if type(secondDict[key]).__name__ == 'dict':
      numLeafs += getNumLeafs(secondDict[key])
    else:
      numLeafs += 1
  return numLeafs
# 获取树的层数
def getTreeDepth(myTree):
  maxDepth = 0
  firstStr = list(myTree.keys())[0]
  secondDict = myTree[firstStr]
  for key in secondDict.keys():
    if type(secondDict[key]).__name__=='dict':
      thisDepth = 1 + getTreeDepth(secondDict[key])
    else:
      thisDepth = 1
    if thisDepth > maxDepth:
      maxDepth = thisDepth
  return maxDepth
def retrieveTree(i):
  listOfTrees = [{'no surfacing': {0:'no', 1:{'flippers':{0:'no',1:'yes'}}}},
                 {'no surfacing':{0:'no', 1:{'flippers':{0:{'head':{0:'no', 1:'yes'}}, 1:'no'}}}}]
  return listOfTrees[i]
retrieveTree(1)

output

{'no surfacing': {0: 'no',

 1: {'flippers': {0: {'head': {0: 'no', 1: 'yes'}}, 1: 'no'}}}}


myTree = retrieveTree(0)
getNumLeafs(myTree)

output

3

getTreeDepth(myTree)

output

2

def plotMidText(cntrPt, parentPt, txtString):
    xMid = (parentPt[0]-cntrPt[0])/2.0 + cntrPt[0]
    yMid = (parentPt[1]-cntrPt[1])/2.0 + cntrPt[1]
    createPlot.ax1.text(xMid, yMid, txtString, va="center", ha="center", rotation=30)
def plotTree(myTree, parentPt, nodeTxt):
    numLeafs = getNumLeafs(myTree)
    depth = getTreeDepth(myTree)
    firstStr = list(myTree.keys())[0]
    cntrPt = (plotTree.xOff + (1.0 + float(numLeafs))/2.0/plotTree.totalW, plotTree.yOff)
    plotMidText(cntrPt, parentPt, nodeTxt)
    plotNode(firstStr, cntrPt, parentPt, decisionNode)
    secondDict = myTree[firstStr]
    plotTree.yOff = plotTree.yOff - 1.0/plotTree.totalD
    for key in secondDict.keys():
        if type(secondDict[key]).__name__=='dict':
            plotTree(secondDict[key],cntrPt,str(key))
        else:
            plotTree.xOff = plotTree.xOff + 1.0/plotTree.totalW
            plotNode(secondDict[key], (plotTree.xOff, plotTree.yOff), cntrPt, leafNode)
            plotMidText((plotTree.xOff, plotTree.yOff), cntrPt, str(key))
    plotTree.yOff = plotTree.yOff + 1.0/plotTree.totalD
def createPlot(inTree):
    fig = plt.figure(1, facecolor='white')
    fig.clf()
    axprops = dict(xticks=[], yticks=[])
    createPlot.ax1 = plt.subplot(111, frameon=False, **axprops)
    plotTree.totalW = float(getNumLeafs(inTree))
    plotTree.totalD = float(getTreeDepth(inTree))
    plotTree.xOff = -0.5/plotTree.totalW; plotTree.yOff = 1.0;
    plotTree(inTree, (0.5,1.0), '')
    plt.show()
myTree = retrieveTree(0)
createPlot(myTree)

output

myTree['no surfacing'][2] = 'maybe'
myTree

output

{'no surfacing': {0: 'no', 1: {'flippers': {0: 'no', 1: 'yes'}}, 2: 'maybe'}}

createPlot(myTree)

output


测试和存储分类器


测试算法:使用决策树执行分类

# 使用决策树的分类函数
def classify(inputTree, featLabels, testVec):
  firstStr = list(inputTree.keys())[0]
  secondDict = inputTree[firstStr]
  featIndex = featLabels.index(firstStr)
  for key in secondDict.keys():
    if testVec[featIndex] == key:
      if type(secondDict[key]).__name__ == 'dict':
        classLabel = classify(secondDict[key], featLabels, testVec)
      else:
        classLabel = secondDict[key]
  return classLabel
myDat, labels = createDataSet()
myTree = retrieveTree(0)
classify(myTree, labels, [1,0])

output

'no'

classify(myTree, labels, [1,1])

output

'yes'

使用算法:决策树的存储

# 使用pickle模块存储决策树
def storeTree(inputTree,filename):
    import pickle
    fw = open(filename,'wb')
    pickle.dump(inputTree,fw)
    fw.close()
 
def grabTree(filename):
    import pickle
    fr = open(filename, 'rb')
    return pickle.load(fr)
myTree

output

{'no surfacing': {0: 'no', 1: {'flippers': {0: 'no', 1: 'yes'}}}}

storeTree(myTree, 'classifierStorage.txt')
 
grabTree('classifierStorage.txt')

output

{'no surfacing': {0: 'no', 1: {'flippers': {0: 'no', 1: 'yes'}}}}
目录
相关文章
|
2月前
|
存储 算法 C语言
"揭秘C语言中的王者之树——红黑树:一场数据结构与算法的华丽舞蹈,让你的程序效率飙升,直击性能巅峰!"
【8月更文挑战第20天】红黑树是自平衡二叉查找树,通过旋转和重着色保持平衡,确保高效执行插入、删除和查找操作,时间复杂度为O(log n)。本文介绍红黑树的基本属性、存储结构及其C语言实现。红黑树遵循五项基本规则以保持平衡状态。在C语言中,节点包含数据、颜色、父节点和子节点指针。文章提供了一个示例代码框架,用于创建节点、插入节点并执行必要的修复操作以维护红黑树的特性。
68 1
|
9天前
|
大数据 UED 开发者
实战演练:利用Python的Trie树优化搜索算法,性能飙升不是梦!
在数据密集型应用中,高效搜索算法至关重要。Trie树(前缀树/字典树)通过优化字符串处理和搜索效率成为理想选择。本文通过Python实战演示Trie树构建与应用,显著提升搜索性能。Trie树利用公共前缀减少查询时间,支持快速插入、删除和搜索。以下为简单示例代码,展示如何构建及使用Trie树进行搜索与前缀匹配,适用于自动补全、拼写检查等场景,助力提升应用性能与用户体验。
27 2
|
24天前
|
机器学习/深度学习 算法 数据挖掘
决策树算法大揭秘:Python让你秒懂分支逻辑,精准分类不再难
【9月更文挑战第12天】决策树算法作为机器学习领域的一颗明珠,凭借其直观易懂和强大的解释能力,在分类与回归任务中表现出色。相比传统统计方法,决策树通过简单的分支逻辑实现了数据的精准分类。本文将借助Python和scikit-learn库,以鸢尾花数据集为例,展示如何使用决策树进行分类,并探讨其优势与局限。通过构建一系列条件判断,决策树不仅模拟了人类决策过程,还确保了结果的可追溯性和可解释性。无论您是新手还是专家,都能轻松上手,享受机器学习的乐趣。
32 9
|
2月前
|
机器学习/深度学习 算法 数据可视化
决策树算法介绍:原理与案例实现
决策树算法介绍:原理与案例实现
|
2月前
|
数据采集 机器学习/深度学习 算法
【python】python客户信息审计风险决策树算法分类预测(源码+数据集+论文)【独一无二】
【python】python客户信息审计风险决策树算法分类预测(源码+数据集+论文)【独一无二】
|
2月前
|
机器学习/深度学习 算法 数据挖掘
决策树算法大揭秘:Python让你秒懂分支逻辑,精准分类不再难
【8月更文挑战第2天】决策树算法以其直观性和解释性在机器学习领域中独具魅力,尤其擅长处理非线性关系。相较于复杂模型,决策树通过简单的分支逻辑实现数据分类,易于理解和应用。本示例通过Python的scikit-learn库演示了使用决策树对鸢尾花数据集进行分类的过程,并计算了预测准确性。虽然决策树优势明显,但也存在过拟合等问题。即便如此,无论是初学者还是专家都能借助决策树的力量提升数据分析能力。
35 4
|
3月前
|
大数据 UED 开发者
实战演练:利用Python的Trie树优化搜索算法,性能飙升不是梦!
【7月更文挑战第19天】Trie树,又称前缀树,是优化字符串搜索的高效数据结构。通过利用公共前缀,Trie树能快速插入、删除和查找字符串。
84 2
|
3月前
|
机器学习/深度学习 数据采集 算法
Python实现GBDT(梯度提升树)回归模型(GradientBoostingRegressor算法)项目实战
Python实现GBDT(梯度提升树)回归模型(GradientBoostingRegressor算法)项目实战
|
3月前
|
机器学习/深度学习 数据采集 算法
Python实现GBDT(梯度提升树)分类模型(GradientBoostingClassifier算法)并应用网格搜索算法寻找最优参数项目实战
Python实现GBDT(梯度提升树)分类模型(GradientBoostingClassifier算法)并应用网格搜索算法寻找最优参数项目实战
113 3
|
3月前
|
存储 算法 Python
Python算法界的秘密武器:分治法巧解难题,贪心算法快速决策,动态规划优化未来!
【7月更文挑战第9天】Python中的分治、贪心和动态规划是三大关键算法。分治法将大问题分解为小问题求解,如归并排序;贪心算法每步选局部最优解,不保证全局最优,如找零钱;动态规划存储子问题解求全局最优,如斐波那契数列。选择合适算法能提升编程效率。
52 1
下一篇
无影云桌面