X光安检图像检测挑战赛3.0(下)

简介: X光安检图像检测挑战赛3.0(下)

三、模型训练


1.transforms定义


# 定义训练和验证时的transforms
# API说明:https://github.com/PaddlePaddle/PaddleX/blob/develop/docs/apis/transforms/transforms.md
import paddlex as pdx
from paddlex import transforms as T
train_transforms = T.Compose([
    T.MixupImage(mixup_epoch=250), T.RandomDistort(),
    T.RandomExpand(im_padding_value=[123.675, 116.28, 103.53]), T.RandomCrop(),
    T.RandomDistort(brightness_range=0.5, brightness_prob=0.5, contrast_range=0.5, contrast_prob=0.5, saturation_range=0.5, saturation_prob=0.5, hue_range=18, hue_prob=0.5, random_apply=True, count=4, shuffle_channel=False),
    T.RandomHorizontalFlip(), T.RandomVerticalFlip(), T.BatchRandomResize(
        target_sizes=[320, 352, 384, 416, 448, 480, 512, 544, 576, 608],
        interp='RANDOM'), T.Normalize(
            mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
eval_transforms = T.Compose([
    T.Resize(
        608, interp='CUBIC'), T.Normalize(
            mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
[08-21 14:22:29 MainThread @utils.py:79] WRN paddlepaddle version: 2.3.1. The dynamic graph version of PARL is under development, not fully tested and supported
/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/parl/remote/communication.py:38: DeprecationWarning: 'pyarrow.default_serialization_context' is deprecated as of 2.0.0 and will be removed in a future version. Use pickle or the pyarrow IPC functionality instead.
  context = pyarrow.default_serialization_context()
/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/matplotlib/__init__.py:107: DeprecationWarning: Using or importing the ABCs from 'collections' instead of from 'collections.abc' is deprecated, and in 3.8 it will stop working
  from collections import MutableMapping
/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/matplotlib/rcsetup.py:20: DeprecationWarning: Using or importing the ABCs from 'collections' instead of from 'collections.abc' is deprecated, and in 3.8 it will stop working
  from collections import Iterable, Mapping
/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/matplotlib/colors.py:53: DeprecationWarning: Using or importing the ABCs from 'collections' instead of from 'collections.abc' is deprecated, and in 3.8 it will stop working
  from collections import Sized
2022-08-21 14:22:29,871-WARNING: type object 'QuantizationTransformPass' has no attribute '_supported_quantizable_op_type'
2022-08-21 14:22:29,873-WARNING: If you want to use training-aware and post-training quantization, please use Paddle >= 1.8.4 or develop version


2.数据集定义


# 定义训练和验证所用的数据集
# API说明:https://github.com/PaddlePaddle/PaddleX/blob/develop/docs/apis/datasets.md
train_dataset = pdx.datasets.VOCDetection(
    data_dir='data/round1/train/',
    file_list='data/round1/train/train_list.txt',
    label_list='data/round1/train/labels.txt',
    transforms=train_transforms,
    shuffle=True)
eval_dataset = pdx.datasets.VOCDetection(
    data_dir='data/round1/train',
    file_list='data/round1/train/val_list.txt',
    label_list='data/round1/train/labels.txt',
    transforms=eval_transforms,
    shuffle=False)
2022-08-21 14:22:31 [INFO]  Starting to read file list from dataset...
2022-08-21 14:22:35 [INFO]  3212 samples in file data/round1/train/train_list.txt, including 3212 positive samples and 0 negative samples.
creating index...
index created!
2022-08-21 14:22:35 [INFO]  Starting to read file list from dataset...
2022-08-21 14:22:36 [INFO]  802 samples in file data/round1/train/val_list.txt, including 802 positive samples and 0 negative samples.
creating index...
index created!


3.模型定义


# 初始化模型,并进行训练
# 可使用VisualDL查看训练指标,参考https://github.com/PaddlePaddle/PaddleX/blob/develop/docs/visualdl.md
num_classes = len(train_dataset.labels)
model = pdx.det.YOLOv3(num_classes=num_classes, backbone='DarkNet53')
W0821 14:22:36.573086 10280 gpu_resources.cc:61] Please NOTE: device: 0, GPU Compute Capability: 7.0, Driver API Version: 11.2, Runtime API Version: 10.1
W0821 14:22:36.577816 10280 gpu_resources.cc:91] device: 0, cuDNN Version: 7.6.


4.模型定义


主要是batch size 选择:

  • batch size: 8, 对应显存 13421
  • batch size:19.37, 对应显存 32000 选择16即可。

image.png

# API说明:https://github.com/PaddlePaddle/PaddleX/blob/develop//docs/apis/models/detection.md
# 各参数介绍与调整说明:https://github.com/PaddlePaddle/PaddleX/blob/develop//docs/parameters.md
model.train(
    num_epochs=270,
    train_dataset=train_dataset,
    train_batch_size=16,
    eval_dataset=eval_dataset,
    learning_rate=0.001 / 8,
    warmup_steps=1000,
    warmup_start_lr=0.0,
    save_interval_epochs=10,
    lr_decay_epochs=[216, 243],
    save_dir='output/yolov3_darknet53',
    use_vdl=True)
2022-08-21 14:22:36 [INFO]  Downloading DarkNet53_pretrained.pdparams from https://paddledet.bj.bcebos.com/models/pretrained/DarkNet53_pretrained.pdparams
  0%|          | 291/158704 [00:00<00:56, 2800.01KB/s]100%|██████████| 158704/158704 [00:03<00:00, 50714.52KB/s]
2022-08-21 14:22:39 [INFO]  Loading pretrained model from output/yolov3_darknet53/pretrain/DarkNet53_pretrained.pdparams
2022-08-21 14:22:40 [WARNING] neck.yolo_block.0.conv_module.conv0.conv.weight is not in pretrained model
2022-08-21 14:22:40 [WARNING] neck.yolo_block.0.conv_module.conv0.batch_norm.weight is not in pretrained model
2022-08-21 14:22:40 [WARNING] neck.yolo_block.0.conv_module.conv0.batch_norm.bias is not in pretrained model
2022-08-21 14:22:40 [WARNING] neck.yolo_block.0.conv_module.conv0.batch_norm._mean is not in pretrained model
2022-08-21 14:22:40 [WARNING] neck.yolo_block.0.conv_module.conv0.batch_norm._variance is not in pretrained model
2022-08-21 14:22:40 [WARNING] neck.yolo_block.0.conv_module.conv1.conv.weight is not in pretrained model
2022-08-21 14:22:40 [WARNING] neck.yolo_block.0.conv_module.conv1.batch_norm.weight is not in pretrained model
2022-08-21 14:22:40 [WARNING] neck.yolo_block.0.conv_module.conv1.batch_norm.bias is not in pretrained model
2022-08-21 14:22:40 [WARNING] neck.yolo_block.0.conv_module.conv1.batch_norm._mean is not in pretrained model
2022-08-21 14:22:40 [WARNING] neck.yolo_block.0.conv_module.conv1.batch_norm._variance is not in pretrained model
2022-08-21 14:22:40 [WARNING] neck.yolo_block.0.conv_module.conv2.conv.weight is not in pretrained model
2022-08-21 14:22:40 [WARNING] neck.yolo_block.0.conv_module.conv2.batch_norm.weight is not in pretrained model
2022-08-21 14:22:40 [WARNING] neck.yolo_block.0.conv_module.conv2.batch_norm.bias is not in pretrained model
2022-08-21 14:22:40 [WARNING] neck.yolo_block.0.conv_module.conv2.batch_norm._mean is not in pretrained model
2022-08-21 14:22:40 [WARNING] neck.yolo_block.0.conv_module.conv2.batch_norm._variance is not in pretrained model
2022-08-21 14:22:40 [WARNING] neck.yolo_block.0.conv_module.conv3.conv.weight is not in pretrained model
2022-08-21 14:22:40 [WARNING] neck.yolo_block.0.conv_module.conv3.batch_norm.weight is not in pretrained model
2022-08-21 14:22:40 [WARNING] neck.yolo_block.0.conv_module.conv3.batch_norm.bias is not in pretrained model
2022-08-21 14:22:40 [WARNING] neck.yolo_block.0.conv_module.conv3.batch_norm._mean is not in pretrained model
2022-08-21 14:22:40 [WARNING] neck.yolo_block.0.conv_module.conv3.batch_norm._variance is not in pretrained model
2022-08-21 14:22:40 [WARNING] neck.yolo_block.0.conv_module.route.conv.weight is not in pretrained model
2022-08-21 14:22:40 [WARNING] neck.yolo_block.0.conv_module.route.batch_norm.weight is not in pretrained model
2022-08-21 14:22:40 [WARNING] neck.yolo_block.0.conv_module.route.batch_norm.bias is not in pretrained model
2022-08-21 14:22:40 [WARNING] neck.yolo_block.0.conv_module.route.batch_norm._mean is not in pretrained model
2022-08-21 14:22:40 [WARNING] neck.yolo_block.0.conv_module.route.batch_norm._variance is not in pretrained model
2022-08-21 14:22:40 [WARNING] neck.yolo_block.0.tip.conv.weight is not in pretrained model
2022-08-21 14:22:40 [WARNING] neck.yolo_block.0.tip.batch_norm.weight is not in pretrained model
2022-08-21 14:22:40 [WARNING] neck.yolo_block.0.tip.batch_norm.bias is not in pretrained model
2022-08-21 14:22:40 [WARNING] neck.yolo_block.0.tip.batch_norm._mean is not in pretrained model
2022-08-21 14:22:40 [WARNING] neck.yolo_block.0.tip.batch_norm._variance is not in pretrained model
2022-08-21 14:22:40 [WARNING] neck.yolo_transition.0.conv.weight is not in pretrained model
2022-08-21 14:22:40 [WARNING] neck.yolo_transition.0.batch_norm.weight is not in pretrained model
2022-08-21 14:22:40 [WARNING] neck.yolo_transition.0.batch_norm.bias is not in pretrained model
2022-08-21 14:22:40 [WARNING] neck.yolo_transition.0.batch_norm._mean is not in pretrained model
2022-08-21 14:22:40 [WARNING] neck.yolo_transition.0.batch_norm._variance is not in pretrained model
2022-08-21 14:22:40 [WARNING] neck.yolo_block.1.conv_module.conv0.conv.weight is not in pretrained model
2022-08-21 14:22:40 [WARNING] neck.yolo_block.1.conv_module.conv0.batch_norm.weight is not in pretrained model
2022-08-21 14:22:40 [WARNING] neck.yolo_block.1.conv_module.conv0.batch_norm.bias is not in pretrained model
2022-08-21 14:22:40 [WARNING] neck.yolo_block.1.conv_module.conv0.batch_norm._mean is not in pretrained model
2022-08-21 14:22:40 [WARNING] neck.yolo_block.1.conv_module.conv0.batch_norm._variance is not in pretrained model
2022-08-21 14:22:40 [WARNING] neck.yolo_block.1.conv_module.conv1.conv.weight is not in pretrained model
2022-08-21 14:22:40 [WARNING] neck.yolo_block.1.conv_module.conv1.batch_norm.weight is not in pretrained model
2022-08-21 14:22:40 [WARNING] neck.yolo_block.1.conv_module.conv1.batch_norm.bias is not in pretrained model
2022-08-21 14:22:40 [WARNING] neck.yolo_block.1.conv_module.conv1.batch_norm._mean is not in pretrained model
2022-08-21 14:22:40 [WARNING] neck.yolo_block.1.conv_module.conv1.batch_norm._variance is not in pretrained model
2022-08-21 14:22:40 [WARNING] neck.yolo_block.1.conv_module.conv2.conv.weight is not in pretrained model
2022-08-21 14:22:40 [WARNING] neck.yolo_block.1.conv_module.conv2.batch_norm.weight is not in pretrained model
2022-08-21 14:22:40 [WARNING] neck.yolo_block.1.conv_module.conv2.batch_norm.bias is not in pretrained model
2022-08-21 14:22:40 [WARNING] neck.yolo_block.1.conv_module.conv2.batch_norm._mean is not in pretrained model
2022-08-21 14:22:40 [WARNING] neck.yolo_block.1.conv_module.conv2.batch_norm._variance is not in pretrained model
2022-08-21 14:22:40 [WARNING] neck.yolo_block.1.conv_module.conv3.conv.weight is not in pretrained model
2022-08-21 14:22:40 [WARNING] neck.yolo_block.1.conv_module.conv3.batch_norm.weight is not in pretrained model
2022-08-21 14:22:40 [WARNING] neck.yolo_block.1.conv_module.conv3.batch_norm.bias is not in pretrained model
2022-08-21 14:22:40 [WARNING] neck.yolo_block.1.conv_module.conv3.batch_norm._mean is not in pretrained model
2022-08-21 14:22:40 [WARNING] neck.yolo_block.1.conv_module.conv3.batch_norm._variance is not in pretrained model
2022-08-21 14:22:40 [WARNING] neck.yolo_block.1.conv_module.route.conv.weight is not in pretrained model
2022-08-21 14:22:40 [WARNING] neck.yolo_block.1.conv_module.route.batch_norm.weight is not in pretrained model
2022-08-21 14:22:40 [WARNING] neck.yolo_block.1.conv_module.route.batch_norm.bias is not in pretrained model
2022-08-21 14:22:40 [WARNING] neck.yolo_block.1.conv_module.route.batch_norm._mean is not in pretrained model
2022-08-21 14:22:40 [WARNING] neck.yolo_block.1.conv_module.route.batch_norm._variance is not in pretrained model
2022-08-21 14:22:40 [WARNING] neck.yolo_block.1.tip.conv.weight is not in pretrained model
2022-08-21 14:22:40 [WARNING] neck.yolo_block.1.tip.batch_norm.weight is not in pretrained model
2022-08-21 14:22:40 [WARNING] neck.yolo_block.1.tip.batch_norm.bias is not in pretrained model
2022-08-21 14:22:40 [WARNING] neck.yolo_block.1.tip.batch_norm._mean is not in pretrained model
2022-08-21 14:22:40 [WARNING] neck.yolo_block.1.tip.batch_norm._variance is not in pretrained model
2022-08-21 14:22:40 [WARNING] neck.yolo_transition.1.conv.weight is not in pretrained model
2022-08-21 14:22:40 [WARNING] neck.yolo_transition.1.batch_norm.weight is not in pretrained model
2022-08-21 14:22:40 [WARNING] neck.yolo_transition.1.batch_norm.bias is not in pretrained model
2022-08-21 14:22:40 [WARNING] neck.yolo_transition.1.batch_norm._mean is not in pretrained model
2022-08-21 14:22:40 [WARNING] neck.yolo_transition.1.batch_norm._variance is not in pretrained model
2022-08-21 14:22:40 [WARNING] neck.yolo_block.2.conv_module.conv0.conv.weight is not in pretrained model
2022-08-21 14:22:40 [WARNING] neck.yolo_block.2.conv_module.conv0.batch_norm.weight is not in pretrained model
2022-08-21 14:22:40 [WARNING] neck.yolo_block.2.conv_module.conv0.batch_norm.bias is not in pretrained model
2022-08-21 14:22:40 [WARNING] neck.yolo_block.2.conv_module.conv0.batch_norm._mean is not in pretrained model
2022-08-21 14:22:40 [WARNING] neck.yolo_block.2.conv_module.conv0.batch_norm._variance is not in pretrained model
2022-08-21 14:22:40 [WARNING] neck.yolo_block.2.conv_module.conv1.conv.weight is not in pretrained model
2022-08-21 14:22:40 [WARNING] neck.yolo_block.2.conv_module.conv1.batch_norm.weight is not in pretrained model
2022-08-21 14:22:40 [WARNING] neck.yolo_block.2.conv_module.conv1.batch_norm.bias is not in pretrained model
2022-08-21 14:22:40 [WARNING] neck.yolo_block.2.conv_module.conv1.batch_norm._mean is not in pretrained model
2022-08-21 14:22:40 [WARNING] neck.yolo_block.2.conv_module.conv1.batch_norm._variance is not in pretrained model
2022-08-21 14:22:40 [WARNING] neck.yolo_block.2.conv_module.conv2.conv.weight is not in pretrained model
2022-08-21 14:22:40 [WARNING] neck.yolo_block.2.conv_module.conv2.batch_norm.weight is not in pretrained model
2022-08-21 14:22:40 [WARNING] neck.yolo_block.2.conv_module.conv2.batch_norm.bias is not in pretrained model
2022-08-21 14:22:40 [WARNING] neck.yolo_block.2.conv_module.conv2.batch_norm._mean is not in pretrained model
2022-08-21 14:22:40 [WARNING] neck.yolo_block.2.conv_module.conv2.batch_norm._variance is not in pretrained model
2022-08-21 14:22:40 [WARNING] neck.yolo_block.2.conv_module.conv3.conv.weight is not in pretrained model
2022-08-21 14:22:40 [WARNING] neck.yolo_block.2.conv_module.conv3.batch_norm.weight is not in pretrained model
2022-08-21 14:22:40 [WARNING] neck.yolo_block.2.conv_module.conv3.batch_norm.bias is not in pretrained model
2022-08-21 14:22:40 [WARNING] neck.yolo_block.2.conv_module.conv3.batch_norm._mean is not in pretrained model
2022-08-21 14:22:40 [WARNING] neck.yolo_block.2.conv_module.conv3.batch_norm._variance is not in pretrained model
2022-08-21 14:22:40 [WARNING] neck.yolo_block.2.conv_module.route.conv.weight is not in pretrained model
2022-08-21 14:22:40 [WARNING] neck.yolo_block.2.conv_module.route.batch_norm.weight is not in pretrained model
2022-08-21 14:22:40 [WARNING] neck.yolo_block.2.conv_module.route.batch_norm.bias is not in pretrained model
2022-08-21 14:22:40 [WARNING] neck.yolo_block.2.conv_module.route.batch_norm._mean is not in pretrained model
2022-08-21 14:22:40 [WARNING] neck.yolo_block.2.conv_module.route.batch_norm._variance is not in pretrained model
2022-08-21 14:22:40 [WARNING] neck.yolo_block.2.tip.conv.weight is not in pretrained model
2022-08-21 14:22:40 [WARNING] neck.yolo_block.2.tip.batch_norm.weight is not in pretrained model
2022-08-21 14:22:40 [WARNING] neck.yolo_block.2.tip.batch_norm.bias is not in pretrained model
2022-08-21 14:22:40 [WARNING] neck.yolo_block.2.tip.batch_norm._mean is not in pretrained model
2022-08-21 14:22:40 [WARNING] neck.yolo_block.2.tip.batch_norm._variance is not in pretrained model
2022-08-21 14:22:40 [WARNING] yolo_head.yolo_output.0.weight is not in pretrained model
2022-08-21 14:22:40 [WARNING] yolo_head.yolo_output.0.bias is not in pretrained model
2022-08-21 14:22:40 [WARNING] yolo_head.yolo_output.1.weight is not in pretrained model
2022-08-21 14:22:40 [WARNING] yolo_head.yolo_output.1.bias is not in pretrained model
2022-08-21 14:22:40 [WARNING] yolo_head.yolo_output.2.weight is not in pretrained model
2022-08-21 14:22:40 [WARNING] yolo_head.yolo_output.2.bias is not in pretrained model
2022-08-21 14:22:40 [INFO]  There are 260/366 variables loaded into YOLOv3.
2022-08-21 14:23:05 [INFO]  [TRAIN] Epoch=1/270, Step=10/200, loss_xy=7.773049, loss_wh=8.631678, loss_obj=8424.009766, loss_cls=14.103580, loss=8454.517578, lr=0.000001, time_each_step=2.48s, eta=37:16:9
2022-08-21 14:23:23 [INFO]  [TRAIN] Epoch=1/270, Step=20/200, loss_xy=6.570035, loss_wh=6.603613, loss_obj=578.750854, loss_cls=12.434158, loss=604.358643, lr=0.000002, time_each_step=1.81s, eta=27:12:17
2022-08-21 14:23:44 [INFO]  [TRAIN] Epoch=1/270, Step=30/200, loss_xy=6.975683, loss_wh=7.730688, loss_obj=47.920227, loss_cls=14.573313, loss=77.199913, lr=0.000004, time_each_step=2.02s, eta=30:17:17
2022-08-21 14:24:06 [INFO]  [TRAIN] Epoch=1/270, Step=40/200, loss_xy=6.988766, loss_wh=6.911714, loss_obj=39.952698, loss_cls=13.511222, loss=67.364403, lr=0.000005, time_each_step=2.24s, eta=33:32:9
2022-08-21 14:24:31 [INFO]  [TRAIN] Epoch=1/270, Step=50/200, loss_xy=6.662724, loss_wh=7.118166, loss_obj=31.094318, loss_cls=13.199011, loss=58.074219, lr=0.000006, time_each_step=2.55s, eta=38:15:22
2022-08-21 14:24:49 [INFO]  [TRAIN] Epoch=1/270, Step=60/200, loss_xy=5.612492, loss_wh=6.151673, loss_obj=23.123552, loss_cls=12.082365, loss=46.970085, lr=0.000007, time_each_step=1.76s, eta=26:26:55
2022-08-21 14:25:15 [INFO]  [TRAIN] Epoch=1/270, Step=70/200, loss_xy=6.188484, loss_wh=7.226328, loss_obj=22.821095, loss_cls=11.426645, loss=47.662552, lr=0.000009, time_each_step=2.6s, eta=38:56:18
2022-08-21 14:25:39 [INFO]  [TRAIN] Epoch=1/270, Step=80/200, loss_xy=7.388262, loss_wh=8.146477, loss_obj=25.573256, loss_cls=14.415861, loss=55.523857, lr=0.000010, time_each_step=2.42s, eta=36:12:28
2022-08-21 14:26:02 [INFO]  [TRAIN] Epoch=1/270, Step=90/200, loss_xy=6.698905, loss_wh=6.328094, loss_obj=25.467766, loss_cls=13.299914, loss=51.794682, lr=0.000011, time_each_step=2.24s, eta=33:33:32
Exception in thread Thread-7:
Traceback (most recent call last):
  File "/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddle/fluid/dataloader/dataloader_iter.py", line 620, in _get_data
    data = self._data_queue.get(timeout=self._timeout)
  File "/opt/conda/envs/python35-paddle120-env/lib/python3.7/multiprocessing/queues.py", line 105, in get
    raise Empty
_queue.Empty
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
  File "/opt/conda/envs/python35-paddle120-env/lib/python3.7/threading.py", line 926, in _bootstrap_inner
    self.run()
  File "/opt/conda/envs/python35-paddle120-env/lib/python3.7/threading.py", line 870, in run
    self._target(*self._args, **self._kwargs)
  File "/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddle/fluid/dataloader/dataloader_iter.py", line 534, in _thread_loop
    batch = self._get_data()
  File "/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddle/fluid/dataloader/dataloader_iter.py", line 636, in _get_data
    "pids: {}".format(len(failed_workers), pids))
RuntimeError: DataLoader 2 workers exit unexpectedly, pids: 10395, 10396
---------------------------------------------------------------------------
SystemError                               Traceback (most recent call last)
/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddle/fluid/dataloader/dataloader_iter.py in __next__(self)
    745                 if _in_legacy_dygraph():
--> 746                     data = self._reader.read_next_var_list()
    747                     data = _restore_batch(data, self._structure_infos.pop(0))
SystemError: (Fatal) Blocking queue is killed because the data reader raises an exception.
  [Hint: Expected killed_ != true, but received killed_:1 == true:1.] (at /paddle/paddle/fluid/operators/reader/blocking_queue.h:166)

During handling of the above exception, another exception occurred:

KeyboardInterrupt                         Traceback (most recent call last)
/tmp/ipykernel_10280/328266389.py in <module>
     12     lr_decay_epochs=[216, 243],
     13     save_dir='output/yolov3_darknet53',
---> 14     use_vdl=True)
/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddlex/cv/models/detector.py in train(self, num_epochs, train_dataset, train_batch_size, eval_dataset, optimizer, save_interval_epochs, log_interval_steps, save_dir, pretrain_weights, learning_rate, warmup_steps, warmup_start_lr, lr_decay_epochs, lr_decay_gamma, metric, use_ema, early_stop, early_stop_patience, use_vdl, resume_checkpoint)
    332             early_stop=early_stop,
    333             early_stop_patience=early_stop_patience,
--> 334             use_vdl=use_vdl)
    335 
    336     def quant_aware_train(self,
/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddlex/cv/models/base.py in train_loop(self, num_epochs, train_dataset, train_batch_size, eval_dataset, save_interval_epochs, log_interval_steps, save_dir, ema, early_stop, early_stop_patience, use_vdl)
    331             step_time_tic = time.time()
    332 
--> 333             for step, data in enumerate(self.train_data_loader()):
    334                 if nranks > 1:
    335                     outputs = self.run(ddp_net, data, mode='train')
/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddle/fluid/dataloader/dataloader_iter.py in __next__(self)
    744             else:
    745                 if _in_legacy_dygraph():
--> 746                     data = self._reader.read_next_var_list()
    747                     data = _restore_batch(data, self._structure_infos.pop(0))
    748                 else:
KeyboardInterrupt:


目录
相关文章
|
机器学习/深度学习 传感器 人机交互
3D人体姿态估计(教程+代码)
3D人体姿态估计(教程+代码)
|
监控 IDE 开发工具
【esp32c3配置arduino IDE教程】
设计用户操作界面,该设备具备简单易用的操作界面,外加显示屏SSD1306和旋转编码器进行显示和控制,用户后期可进行二次开发WiFi或蓝牙连接电脑或手机监控。
3385 0
|
监控 druid Java
监控druid数据库连接池连接泄露的思路
监控druid数据库连接池连接泄露的思路
1818 2
|
存储 监控 算法
ClickHouse源码分析-压缩算法大揭秘
ClickHouse在近年来增加了很多压缩算法,最主要的改进还是为了更好的适应时序场景,提高压缩率,节省存储空间。本期就给大家带来ClickHouse的压缩算法介绍。
5916 0
ClickHouse源码分析-压缩算法大揭秘
|
网络协议 关系型数据库 MySQL
连接远程mysql数据库失败常见原因及解决办法
1. 没有开启 MySQL 的远程登陆帐号。 1.找到mysql数据库的user表。在user表中新建一条数据,设置User(username)和Host(开放访问MySQL的IP:例如123.118.17.201)以及登录密码。这样就设置了允许访问的用户名和IP地址(若想所有IP都可以访问,则可将Host设置为‘%’,但是这样很危险,不建议)。
9709 0
连接远程mysql数据库失败常见原因及解决办法
|
6月前
|
测试技术 API C++
Playwright 自动化测试系列(7)| 第三阶段:测试框架集成​​Page Object 模式
本课程详解Playwright测试框架中的Page Object模式,通过电商登录-下单实战演示PO架构设计与高级技巧,结合Pytest实现多用户测试。重点解析PO模式提升代码复用性、降低维护成本的核心价值,并提供常见问题解决方案,助力构建高可维护性的自动化测试体系。
|
存储 自然语言处理 数据处理
使用Python计算多个集合的交集详解
使用Python计算多个集合的交集详解
534 1
|
存储 Prometheus 索引
日志系统新贵Loki,确实比笨重的ELK轻
日志系统新贵Loki,确实比笨重的ELK轻
470 0
|
机器学习/深度学习 API 算法框架/工具
【Tensorflow+keras】Keras API两种训练GAN网络的方式
使用Keras API以两种不同方式训练条件生成对抗网络(CGAN)的示例代码:一种是使用train_on_batch方法,另一种是使用tf.GradientTape进行自定义训练循环。
352 5