柏林噪声产生火焰等纹理

简介: 柏林噪声产生火焰等纹理

柏林噪声是一种特殊的随机噪声,即对于每个给定的值产生的随机数是唯一的,但是不同的


值产生不同的随机数。关于柏林噪声更详细的解释可以参考这里:


http://freespace.virgin.net/hugo.elias/models/m_perlin.htm



本文主要是探讨如何使用柏林噪声产生火焰效果与乌云效果的纹理,在解释实现代码之前,


首先来看一下影响柏林噪声效果的两个参数音度(Octave) 与余辉(Persistence),可以调节


纹理的大小和密度。



最终实现的火焰纹理效果

0_132793357343AE.png


最终实现的乌云纹理效果

0_1327933624Soy6.png


最终实现的草地纹理效果–怎么感觉有点魔兽中精灵族的草地啊,哈哈

0_1327933666oTwQ.png


代码解释


首先产生随机空白噪声,使用随机空白噪声产生柏林噪声,最后将柏林噪声映射为RGB值


输出到指定大小的图像中,代码如下:


float[][] whiteNoise = GenerateWhiteNoise(rows, cols);


float[][] perlinNoise = GeneratePerlinNoise(whiteNoise, 6); //


float[][] colorData = MapGray(perlinNoise);



白噪声产生主要是利用JAVA中的系统时间作为种子,产生[0~1]之间的噪声数组


代码如下:


public float[][] GenerateWhiteNoise(int width, int height)


{


Random random = new Random(System.currentTimeMillis());    


float[][] noise = new float[width][height];


for (int i = 0; i < width; i++)


{


       for (int j = 0; j <height; j++)


       {


           noise[i][j] = (float)random.nextDouble();


       }


   }


   return noise;


}



柏林噪声的产生稍微复杂一点点,首先把上面的白噪声数据带入,利用插值公式产生平滑的噪声


数据,具体要产生几组平滑噪声数据取决于音度(Octave)参数。本程序的插值公式非常简单,


代码如下:


public float Interpolate(float x0, float x1, float alpha)


{


return x0 * (1 - alpha) + alpha * x1;


}


最后把这些组的平滑噪声加上不同的振幅混合在一起产生一个输出数组结果即为柏林噪声。


完成上面这些还不足以产生那些效果震撼的纹理,另外一个顶级秘诀在于怎么把柏林噪声


映射到你想要的RGB值。代码如下:


   float[][] MapGradient(float[][] perlinNoise)


   {


      int width =perlinNoise.length;


      int height =perlinNoise[0].length;


      float[][] image = new float[width][height];


      int ta=0, tr=0, tb=0,tg=0;


      for (int i = 0; i <width; i++)


      {


         for (int j = 0; j <height; j++)


         {


         ta = 255;


         int u = (int)(perlinNoise[i][j] * (float)angryFireColorTable.length);


         tr = (int)angryFireColorTable[u][0];


         tg = (int)angryFireColorTable[u][1];


         tb = (int)angryFireColorTable[u][2];


         image[i][j] = (ta <<24) | (tr << 16) | (tg << 8) | tb;


         }


      }


   


      return image;


   }


程序完全源代码如下:

package com.gloomyfish.perlin.noise;
 
import java.util.Random;
 
public class PerlinNoiseCreator {
  
  private int[][] angryFireColorTable = {
      {255, 255, 204},  {255, 255, 204},  {255, 255, 204},  {255, 255, 204},
      {255, 255, 204},  {255, 255, 204},  {255, 255, 204},  {255, 255, 204},  {255, 255, 204},
      {255, 255, 204},  {255, 255, 204},  {255, 255, 204},  {255, 255, 204},  {255, 255, 204},
      {255, 255, 204},  {255, 255, 204},  {255, 255, 204},  {255, 255, 204},  {255, 255, 204},
      {255, 255, 204},  {255, 255, 204},  {255, 255, 204},  {255, 255, 204},  {255, 255, 204},
      {255, 255, 204},  {255, 255, 204},  {255, 255, 204},  {255, 255, 204},  {255, 255, 204},
      {255, 255, 204},  {255, 255, 204},  {255, 255, 204},  {255, 255, 204},  {255, 255, 204},
      {255, 255, 204},  {255, 255, 204},  {255, 255, 204},  {255, 255, 204},  {255, 255, 199},  
      {255, 255, 199},  {255, 255, 197},  {255, 255, 197},  {255, 255, 193},  {255, 255, 193},
      {255, 255, 191},  {255, 255, 191},  {255, 255, 189},  {255, 255, 189},  {255, 255, 185},
      {255, 255, 185},  {255, 255, 183},  {255, 255, 183},  {255, 255, 179},  {255, 255, 179},
      {255, 255, 177},  {255, 255, 177},  {255, 255, 175},  {255, 255, 175},  {255, 255, 171},    
      {255, 255, 171},  {255, 255, 169},  {255, 255, 169},  {255, 255, 167},  {255, 255, 167},
      {255, 255, 163},  {255, 255, 161},  {255, 255, 157},  {255, 255, 155},  {255, 255, 153},
      {255, 251, 149},  {255, 249, 147},  {255, 246, 144},  {255, 244, 142},  {255, 242, 140},
      {253, 244, 205},  {248, 246, 197},  {248, 246, 187},  {248, 245, 178},  {248, 245, 168},
      {247, 245, 160},  {248, 243, 149},  {247, 244, 141},  {249, 243, 133},  {248, 243, 123},
      {249, 242, 112},  {248, 242, 102},  {248, 242, 92}, {247, 241, 81}, {248, 241, 73},
      {247, 240, 63}, {249, 239, 53}, {247, 239, 42}, {249, 238, 32}, {249, 238, 26},
      {248, 234, 21}, {248, 231, 21}, {250, 224, 25}, {248, 218, 24}, {249, 214, 26},
      {249, 209, 26}, {252, 204, 32}, {251, 198, 32}, {251, 191, 33}, {251, 186, 34},
      {250, 179, 35}, {252, 176, 38}, {252, 169, 41}, {252, 164, 41}, {254, 157, 44},
      {254, 151, 46}, {253, 145, 47}, {254, 141, 49}, {251, 136, 47}, {253, 135, 48},
      {251, 130, 47}, {250, 129, 46}, {249, 126, 46}, {247, 124, 44}, {246, 120, 43},
      {244, 118, 41}, {243, 115, 42}, {241, 113, 40}, {242, 111, 41}, {240, 109, 39},
      {239, 104, 40}, {236, 101, 37}, {234, 99, 35},  {235, 97, 34},  {232, 93, 34},
      {231, 91, 32},  {229, 88, 32},  {227, 86, 30},  {227, 83, 30},  {225, 81, 28},
      {224, 78, 27},  {222, 76, 25},  {223, 72, 27},  {221, 70, 25},  {219, 66, 24},
      {216, 63, 22},  {216, 58, 21},  {212, 54, 19},  {210, 50, 18},  {209, 45, 17},
      {206, 40, 14},  {206, 37, 14},  {203, 32, 12},  {200, 29, 9}, {200, 24, 9},
      {197, 21, 6}, {195, 17, 7}, {191, 13, 3}, {190, 7, 3},  {188, 5, 1},
      {184, 2, 0},  {180, 0, 0},  {178, 0, 0},  {174, 0, 0},  {172, 0, 0},
      {169, 1, 0},  {164, 0, 1},  {160, 0, 0},  {158, 0, 0},  {154, 0, 0},
      {150, 0, 0},  {146, 0, 0},  {144, 0, 0},  {140, 0, 1},  {136, 0, 2},
      {133, 0, 1},  {130, 0, 0},  {126, 1, 0},  {124, 0, 2},  {120, 0, 1},
      {116, 0, 0},  {112, 0, 0},  {109, 1, 1},  {104, 0, 0},  {103, 0, 1},
      {98, 0, 0}, {95, 0, 0}, {92, 1, 0}, {92, 1, 0}, {90, 0, 0},
      {89, 1, 0}, {88, 0, 0}, {86, 0, 0}, {86, 0, 0}, {84, 0, 0},
      {84, 0, 0}, {82, 1, 0}, {82, 1, 0}, {80, 0, 0}, {80, 0, 0},
      {79, 1, 1}, {78, 0, 0}, {76, 0, 0}, {76, 0, 0}, {74, 0, 0},
      {74, 0, 0}, {72, 0, 1}, {72, 0, 1}, {70, 0, 0}, {70, 0, 0},
      {69, 1, 2}, {68, 0, 1}, {66, 0, 1}, {66, 0, 1}, {64, 0, 0},
      {62, 1, 0}, {61, 1, 1}, {60, 0, 0}, {60, 0, 0}, {60, 0, 0},
      {58, 0, 0}, {58, 0, 0}, {56, 0, 1}, {56, 0, 1}, {54, 0, 0},
      {54, 0, 0}, {52, 1, 0}, {51, 0, 0}, {50, 0, 1}, {50, 0, 1},
      {49, 1, 1}, {48, 0, 0}, {46, 0, 0}, {46, 0, 0}, {44, 0, 1},
      {42, 0, 1}, {42, 0, 1}, {40, 0, 0}, {40, 0, 0}, {39, 0, 0},
      {38, 0, 0}, {38, 0, 0}, {36, 0, 0}, {35, 0, 0}, {34, 0, 0},
      {34, 0, 0}, {32, 0, 1}, {30, 0, 0}, {30, 0, 0}, {29, 1, 0},
      {28, 0, 0}, {28, 0, 0}, {26, 0, 1}, {24, 0, 0}, {22, 1, 0},
      {22, 1, 0}, {21, 1, 0}, {20, 0, 0}, {19, 1, 1}, {19, 1, 1},
      {16, 0, 0}, {16, 0, 0}, {16, 0, 0}, {14, 0, 0}, {12, 0, 0},
      {12, 0, 0}, {11, 1, 0}, {10, 0, 0}, {9, 1, 0},  {8, 0, 0},
      {6, 0, 0},  {6, 0, 0},  {5, 1, 0},  {4, 0, 0},  {2, 1, 0},
      {2, 1, 0},  {1, 1, 1},  {0, 0, 0},  {0, 0, 0},  {0, 0, 0},
    };
 
  
  public void generateNoise(int[] noiseData, int rows, int cols) {
 
    float[][] whiteNoise = GenerateWhiteNoise(rows, cols);
    float[][] perlinNoise = GeneratePerlinNoise(whiteNoise, 6); // default value is 6
    //float[][] colorData = MapGradient(perlinNoise);
    float[][] colorData = MapGray(perlinNoise);
    int index = 0;
    for(int row = 0; row<rows; row++) {
      for(int col=0; col<cols; col++) {
        index = row * cols + col;
        noiseData[index] = (int)colorData[row][col];
      }
    }
  }
  
  public float[][] GenerateWhiteNoise(int width, int height)
  {
      Random random = new Random(System.currentTimeMillis()); //Seed to 0 for testing
      float[][] noise = new float[width][height];
   
      for (int i = 0; i < width; i++)
      {
          for (int j = 0; j < height; j++)
          {
              noise[i][j] = (float)random.nextDouble();
          }
      }
   
      return noise;
  }
  
  public float[][] GenerateSmoothNoise(float[][] baseNoise, int octave)
  {
     int width = baseNoise.length;
     int height = baseNoise[0].length;
   
     float[][] smoothNoise = new float[width][height];
   
     int samplePeriod = 1 << octave; // calculates 2 ^ k
     float sampleFrequency = 1.0f / samplePeriod;
   
     for (int i = 0; i < width; i++)
     {
        //calculate the horizontal sampling indices
        int sample_i0 = (i / samplePeriod) * samplePeriod;
        int sample_i1 = (sample_i0 + samplePeriod) % width; //wrap around
        float horizontal_blend = (i - sample_i0) * sampleFrequency;
   
        for (int j = 0; j < height; j++)
        {
           //calculate the vertical sampling indices
           int sample_j0 = (j / samplePeriod) * samplePeriod;
           int sample_j1 = (sample_j0 + samplePeriod) % height; //wrap around
           float vertical_blend = (j - sample_j0) * sampleFrequency;
   
           //blend the top two corners
           float top = Interpolate(baseNoise[sample_i0][sample_j0],
              baseNoise[sample_i1][sample_j0], horizontal_blend);
   
           //blend the bottom two corners
           float bottom = Interpolate(baseNoise[sample_i0][sample_j1],
              baseNoise[sample_i1][sample_j1], horizontal_blend);
   
           //final blend
           smoothNoise[i][j] = Interpolate(top, bottom, vertical_blend);
        }
     }
   
     return smoothNoise;
  }
  
  public float Interpolate(float x0, float x1, float alpha)
  {
     return x0 * (1 - alpha) + alpha * x1;
  }
  
  public float[][] GeneratePerlinNoise(float[][] baseNoise, int octaveCount)
  {
     int width = baseNoise.length;
     int height = baseNoise[0].length;
   
     float[][][] smoothNoise = new float[octaveCount][][]; //an array of 2D arrays containing
   
     float persistance = 0.5f; // default value is 0.5f
   
     //generate smooth noise
     for (int i = 0; i < octaveCount; i++)
     {
         smoothNoise[i] = GenerateSmoothNoise(baseNoise, i);
     }
   
      float[][] perlinNoise = new float[width][height];
      float amplitude = 1.0f;
      float totalAmplitude = 0.0f;
   
      //blend noise together
      for (int octave = octaveCount - 1; octave >= 0; octave--)
      {
         amplitude *= persistance;
         totalAmplitude += amplitude;
   
         for (int i = 0; i < width; i++)
         {
            for (int j = 0; j < height; j++)
            {
               perlinNoise[i][j] += smoothNoise[octave][i][j] * amplitude;
            }
         }
      }
   
     //normalization
     for (int i = 0; i < width; i++)
     {
        for (int j = 0; j < height; j++)
        {
           perlinNoise[i][j] /= totalAmplitude;
        }
     }
   
     return perlinNoise;
  }
  
  float[][] MapGray(float[][] perlinNoise)
  {
     int width = perlinNoise.length;
     int height = perlinNoise[0].length;
     float[][] image = new float[width][height];
     int ta=0, tr=0, tb=0, tg=0;
     for (int i = 0; i < width; i++)
     {
        for (int j = 0; j < height; j++)
        {
          ta = 255;
          int u = (int)(perlinNoise[i][j] * (float)80.0);
          tr = u+100;
          tg = u+100;
          tb = u+100;
          //ta = (int)(255.0f * perlinNoise[i][j]);
          image[i][j] = (ta << 24) | (tr << 16) | (tg << 8) | tb;
          
        }
     }
     
     return image;
  }
  
  float[][] MapGradient(float[][] perlinNoise)
  {
     int width = perlinNoise.length;
     int height = perlinNoise[0].length;
     float[][] image = new float[width][height];
     int ta=0, tr=0, tb=0, tg=0;
     for (int i = 0; i < width; i++)
     {
        for (int j = 0; j < height; j++)
        {
          ta = 255;
          int u = (int)(perlinNoise[i][j] * (float)angryFireColorTable.length);
          tr = (int)angryFireColorTable[u][0];
          tg = (int)angryFireColorTable[u][1];
          tb = (int)angryFireColorTable[u][2];
          image[i][j] = (ta << 24) | (tr << 16) | (tg << 8) | tb;
        }
     }
     
     return image;
  }
 
}
相关文章
|
机器学习/深度学习 传感器 算法
数字图像处理实验(五)|图像复原{逆滤波和伪逆滤波、维纳滤波deconvwnr、大气湍流扰动模型、运动模糊处理fspecial}(附matlab实验代码和截图)
数字图像处理实验(五)|图像复原{逆滤波和伪逆滤波、维纳滤波deconvwnr、大气湍流扰动模型、运动模糊处理fspecial}(附matlab实验代码和截图)
1150 0
数字图像处理实验(五)|图像复原{逆滤波和伪逆滤波、维纳滤波deconvwnr、大气湍流扰动模型、运动模糊处理fspecial}(附matlab实验代码和截图)
|
8月前
|
文件存储
AvaSpec-ULS2048光谱仪测定地物高光谱曲线的方法
AvaSpec-ULS2048光谱仪测定地物高光谱曲线的方法
|
机器学习/深度学习 传感器 算法
球体同胚表面准各向同性采样附matlab代码
球体同胚表面准各向同性采样附matlab代码
|
算法 C++ 计算机视觉
光学算法——PSD功率谱密度
光学算法——PSD功率谱密度
929 0
|
机器学习/深度学习 传感器 人工智能
基于MATLAB进行荧光光谱数据处理包括三维荧光光谱图、等高线图、激发光谱图、发射光谱图
基于MATLAB进行荧光光谱数据处理包括三维荧光光谱图、等高线图、激发光谱图、发射光谱图
【基于矢量射线的衍射积分 (VRBDI)】基于矢量射线的衍射积分 (VRBDI) 和仿真工具(Matlab代码实现)
【基于矢量射线的衍射积分 (VRBDI)】基于矢量射线的衍射积分 (VRBDI) 和仿真工具(Matlab代码实现)
109 0
|
机器学习/深度学习 传感器 数据采集
基于后投影算法穿墙雷达成像附matlab代码
基于后投影算法穿墙雷达成像附matlab代码
|
算法
大气湍流自适应光学校正算法matlab仿真,包括涡旋光束,大气湍流影响,不同轨道角动量OAM态之间的串扰,校正等
大气湍流自适应光学校正算法matlab仿真,包括涡旋光束,大气湍流影响,不同轨道角动量OAM态之间的串扰,校正等
563 0
大气湍流自适应光学校正算法matlab仿真,包括涡旋光束,大气湍流影响,不同轨道角动量OAM态之间的串扰,校正等
|
图形学
计算机图形学——实验三 光照与材质处理实验
实验三 光照与材质处理实验 了解简单光照明模型的基本原理,利用VS+OpenGL实现物体的光照和材质处理。 1. 光照模型 当光照射到一个物体表面上时,会出现三种情形。首先,光可以通过物体表面向空间反射,产生反射光;其次,对于透明物体,光可以穿透该物体并从另一端射出,产生透射光;最后,部分光被物体表面吸收而转换成热。在上述三部分光中,仅仅是透射光和反射光能够进入人眼产生视觉效果。此外,物体本身还有可能发光。这里我们暂时不考虑透明物体,这样场景中可能存在以下几种类型的光,即环境光、散射光、镜面光和辐射光。 1
424 0
计算机图形学——实验三 光照与材质处理实验
|
机器学习/深度学习 传感器 算法
【湍流】基于Matlab模拟高斯光束在湍流大气中传输仿真,得到大气湍流相位屏、以及光斑强度变化
【湍流】基于Matlab模拟高斯光束在湍流大气中传输仿真,得到大气湍流相位屏、以及光斑强度变化

热门文章

最新文章