数据结构和算法——归并排序(有序子列的归并、递归算法、非递归算法、思路图解、C语言代码)

简介: 数据结构和算法——归并排序(有序子列的归并、递归算法、非递归算法、思路图解、C语言代码)

有序子列的归并

思路图解

代码(C语言)

有序子列的归并
思路图解


代码(C语言)
/* L

时间复杂度

如果两个子列一共有N个元素,则归并的时间复杂度为:

递归算法

代码(C语言)

void Msort( ElementType A[], ElementType TmpA[], int L, int RightEnd )
{ /* 核心递归排序函数 */ 
     int Center;
     
     if ( L < RightEnd ) {
          Center = (L+RightEnd) / 2;
          Msort( A, TmpA, L, Center );              /* 递归解决左边 */ 
          Msort( A, TmpA, Center+1, RightEnd );     /* 递归解决右边 */  
          Merge( A, TmpA, L, Center+1, RightEnd );  /* 合并两段有序序列 */ 
     }
}

图示

时间复杂度

统一函数接口

void Merge_Sort(ElementType A[],int N)
{
    ElementType *TmpA;
    TmpA = malloc( N * sizeof(ElementType) );
    if(TmpA != NULL)
    {
        MSort(A,TmpA,0,N-1);
        free(TmpA);
    }
    else    Error("空间不足");
}

如果只在Merge中声明临时数组TmpA,则在递归的过程中会不断进行申请和释放空间;原本只需要一块空间的情况则会变成以下的情况:

非递归算法

图示

代码(C语言)

/* 这里Merge函数在递归版本中给出 */
 
/* length = 当前有序子列的长度*/
void Merge_pass( ElementType A[], ElementType TmpA[], int N, int length )
{ /* 两两归并相邻有序子列 */
     int i, j;
      
     for ( i=0; i <= N-2*length; i += 2*length )
         Merge( A, TmpA, i, i+length, i+2*length-1 );
     if ( i+length < N ) /* 归并最后2个子列*/
         Merge( A, TmpA, i, i+length, N-1);
     else /* 最后只剩1个子列*/
         for ( j = i; j < N; j++ ) TmpA[j] = A[j];
}

统一函数接口

void Merge_Sort( ElementType A[], int N )
{ 
     int length; 
     ElementType *TmpA;
     
     length = 1; /* 初始化子序列长度*/
     TmpA = malloc( N * sizeof( ElementType ) );
     if ( TmpA != NULL ) {
          while( length < N ) {
              Merge_pass( A, TmpA, N, length );
              length *= 2;
              Merge_pass( TmpA, A, N, length );
              length *= 2;
          }
          free( TmpA );
     }
     else printf( "空间不足" );
}void Merge_Sort( ElementType A[], int N )
{ 
     int length; 
     ElementType *TmpA;
     
     length = 1; /* 初始化子序列长度*/
     TmpA = malloc( N * sizeof( ElementType ) );
     if ( TmpA != NULL ) {
          while( length < N ) {
              Merge_pass( A, TmpA, N, length );
              length *= 2;
              Merge_pass( TmpA, A, N, length );
              length *= 2;
          }
          free( TmpA );
     }
     else printf( "空间不足" );

注意:归并排序一般不用于内排序,因为其要额外消耗空间;所以一般在外排序时才会使用归并排序。


end



目录
相关文章
|
21天前
|
算法 数据处理 C语言
C语言中的位运算技巧,涵盖基本概念、应用场景、实用技巧及示例代码,并讨论了位运算的性能优势及其与其他数据结构和算法的结合
本文深入解析了C语言中的位运算技巧,涵盖基本概念、应用场景、实用技巧及示例代码,并讨论了位运算的性能优势及其与其他数据结构和算法的结合,旨在帮助读者掌握这一高效的数据处理方法。
33 1
|
1月前
|
存储 安全 数据管理
C语言之考勤模拟系统平台(千行代码)
C语言之考勤模拟系统平台(千行代码)
51 4
|
22天前
|
存储 算法 搜索推荐
Python 中数据结构和算法的关系
数据结构是算法的载体,算法是对数据结构的操作和运用。它们共同构成了计算机程序的核心,对于提高程序的质量和性能具有至关重要的作用
|
22天前
|
数据采集 存储 算法
Python 中的数据结构和算法优化策略
Python中的数据结构和算法如何进行优化?
|
1月前
|
算法
数据结构之路由表查找算法(深度优先搜索和宽度优先搜索)
在网络通信中,路由表用于指导数据包的传输路径。本文介绍了两种常用的路由表查找算法——深度优先算法(DFS)和宽度优先算法(BFS)。DFS使用栈实现,适合路径问题;BFS使用队列,保证找到最短路径。两者均能有效查找路由信息,但适用场景不同,需根据具体需求选择。文中还提供了这两种算法的核心代码及测试结果,验证了算法的有效性。
96 23
|
1月前
|
算法
数据结构之蜜蜂算法
蜜蜂算法是一种受蜜蜂觅食行为启发的优化算法,通过模拟蜜蜂的群体智能来解决优化问题。本文介绍了蜜蜂算法的基本原理、数据结构设计、核心代码实现及算法优缺点。算法通过迭代更新蜜蜂位置,逐步优化适应度,最终找到问题的最优解。代码实现了单链表结构,用于管理蜜蜂节点,并通过适应度计算、节点移动等操作实现算法的核心功能。蜜蜂算法具有全局寻优能力强、参数设置简单等优点,但也存在对初始化参数敏感、计算复杂度高等缺点。
59 20
|
21天前
|
存储 算法 程序员
C 语言递归算法:以简洁代码驾驭复杂逻辑
C语言递归算法简介:通过简洁的代码实现复杂的逻辑处理,递归函数自我调用解决分层问题,高效而优雅。适用于树形结构遍历、数学计算等领域。
|
21天前
|
存储 缓存 算法
C语言在实现高效算法方面的特点与优势,包括高效性、灵活性、可移植性和底层访问能力
本文探讨了C语言在实现高效算法方面的特点与优势,包括高效性、灵活性、可移植性和底层访问能力。文章还分析了数据结构的选择与优化、算法设计的优化策略、内存管理和代码优化技巧,并通过实际案例展示了C语言在排序和图遍历算法中的高效实现。
41 2
|
27天前
|
存储 安全 物联网
C语言物联网开发之设备安全与代码可靠性隐患
物联网设备的C语言代码安全与可靠性至关重要。一是防范代码安全漏洞,包括缓冲区溢出和代码注入风险,通过使用安全函数和严格输入验证来预防。二是提高代码跨平台兼容性,利用`stdint.h`定义统一的数据类型,并通过硬件接口抽象与适配减少平台间的差异,确保程序稳定运行。
|
21天前
|
机器学习/深度学习 算法 数据挖掘
C语言在机器学习中的应用及其重要性。C语言以其高效性、灵活性和可移植性,适合开发高性能的机器学习算法,尤其在底层算法实现、嵌入式系统和高性能计算中表现突出
本文探讨了C语言在机器学习中的应用及其重要性。C语言以其高效性、灵活性和可移植性,适合开发高性能的机器学习算法,尤其在底层算法实现、嵌入式系统和高性能计算中表现突出。文章还介绍了C语言在知名机器学习库中的作用,以及与Python等语言结合使用的案例,展望了其未来发展的挑战与机遇。
39 1
下一篇
DataWorks