数据结构学习记录——图应用实例-拯救007(问题描述、解题思路、伪代码解读、C语言算法实现)

简介: 数据结构学习记录——图应用实例-拯救007(问题描述、解题思路、伪代码解读、C语言算法实现)

问题描述

在老电影“007之生死关头”(Live and Let Die)中有一个情节,007被毒贩抓到一个鳄鱼池中心的小岛上,他用了一种极为大胆的方法逃脱 —— 直接踩着池子里一系列鳄鱼的大脑袋跳上岸去!(据说当年替身演员被最后一条鳄鱼咬住了脚,幸好穿的是特别加厚的靴子才逃过一劫。)


设鳄鱼池是长宽为100米的方形,中心坐标为 (0, 0),且东北角坐标为 (50, 50)。池心岛是以 (0, 0) 为圆心、直径15米的圆。给定池中分布的鳄鱼的坐标、以及007一次能跳跃的最大距离,你需要告诉他是否有可能逃出生天。

解题思路

1. 图的数据结构:将鳄鱼的坐标看作图的节点,鳄鱼之间的距离小于等于007一次能跳跃的最大距离的关系看作图的边。


2. 搜索算法:使用广度优先搜索(BFS)或深度优先搜索(DFS)来探索图,找到从007的起始位置出发是否能到达岸边或者岛屿的边界。这相当于在图中查找从起点到终点的路径。

- 如果找到了从起点到终点的路径,那么007可以逃脱,返回 "可能逃脱"。

  - 如果没有找到路径,那么007无法逃脱,返回 "不可能逃脱"。


这个问题的关键是用图的数据结构和选择适当的搜索算法来找到路径。也就是之前学过的图的遍历的一种应用,在实例中,情况会有所不同。007如果第一次能跳到鳄鱼上,那么在那第一只鳄鱼上,需要判断在跳跃半径内,是否有其他可以跳跃到的而且没有踩过的鳄鱼,这个就相当于有没有被访问过的节点。在过程中,要不断判断能不能直接从鳄鱼跳到岸上,如果能,就拯救成功了;如果不能,且没有其他可以跳跃的鳄鱼或者周围半径内所有能跳到的鳄鱼都是被自己踩过的,那么就往回跳,继续寻找跳跃点。

伪代码

总体算法

void Save007(Graph G)
{
    for (each V in G)
    {
        if (!visited[V] && FirstJump(V))
        {
            answer = DFS(V);
            if (answer == YES)
                break;
        }
    }
    
    if (answer == YES)
        output("Yes");
    else
        output("No");
}

DFS算法

int DFS(Vertex V)
{
    if (IsSafe(V))
        answer = YES;
    else
    {
        for (each W in G)
        {
            if (!visited[W] && Jump(V, W))
            {
                answer = DFS(W);
                if (answer == YES)
                    break;
            }
        }
    }
    
    return answer;
}

伪代码解读

总体算法


使用一个for循环遍历图中的每个顶点 "V"。


对于每个顶点 "V",if需要判断两个条件:1.是否之前未访问过。2.是否满足函数FirstJump的条件。(函数FirstJump用来判断一个顶点是否满足进行第一次跳跃的条件。)


如果这两个条件都满足,则调用函数DFS进行深度优先搜索,并将返回值存储在变量 answer 中。


如果answer的值等于YES,则跳出循环。表明可以从当前鳄鱼跳到岸边,成功脱离危险了。


在循环结束后,代码检查answer的值。如果等于YES,则输出 "Yes";否则输出 "No"。

DFS算法


首先先判断顶点V是否满足函数IsSafe的条件。如果满足条件,则将answer设置为YES。(IsSafe函数用于

判断顶点是否满足安全条件,即顶点是否在岸上。)


如果顶点V不满足条件,那么就对图中的每个顶点W进行遍历。


对于每个顶点W,进行两个判断:1.顶点W之前是否未被访问过。2.从顶点V是否可以跳到顶点W(使用函数Jump)


如果这两个条件都满足,则递归调用DFS函数,并将返回值存储在变量answer中。如果递归调用的结果为YES,则跳出循环。

最后,将answer的值作为结果返回。

具体实现(C语言)

#include <stdio.h>
#include <math.h>
 
#define MAX_VERTICES 100
 
typedef struct {
  double x;
  double y;
} Vertex;
 
int visited[MAX_VERTICES]; // 记录顶点是否已访问过
 
// 计算两点之间的欧氏距离(即利用平面上两点间的距离公式计算)
double calculateDistance(Vertex p1, Vertex p2) 
{
  double dx = p2.x - p1.x;
  double dy = p2.y - p1.y;
  return sqrt(dx * dx + dy * dy);
}
 
// 判断顶点是否安全
int IsSafe(Vertex V) 
{
  double distanceToIslandCenter = sqrt(V.x * V.x + V.y * V.y);
  if (distanceToIslandCenter <= 15.0) 
  {
    return 1; // 安全
  }
  else 
  {
    return 0; // 不安全
  }
}
 
// 判断是否可以从顶点V跳到顶点W
int Jump(Vertex V, Vertex W) 
{
  double distance = calculateDistance(W,V);
  if (distance <= 20.0) 
  {
    return 1; // 可以跳到
  }
  else 
  {
    return 0; // 无法跳到
  }
}
 
// 递归深度优先搜索
int DFS(int V, Vertex G[MAX_VERTICES]);
 
// 遍历图G中的每个顶点,查找是否有路径可以逃出生天
int Save007(Vertex G[MAX_VERTICES]) 
{
  int answer = 0; // 保存逃生结果
 
  for (int i = 0; i < MAX_VERTICES; i++) 
  {
    visited[i] = 0; // 初始化visited数组
  }
 
  for (int i = 0; i < MAX_VERTICES; i++) 
  {
    if (!visited[i] && IsSafe(G[i])) 
    {
      answer = DFS(i, G);
      if (answer == 1) 
      {
        break;
      }
    }
  }
 
  return answer;
}
 
// 递归深度优先搜索
int DFS(int V, Vertex G[MAX_VERTICES]) 
{
  visited[V] = 1; // 将顶点标记为已访问
 
  if (IsSafe(G[V])) 
  {
    return YES; // 可以逃出生天
  }
  else 
  {
    for (int i = 0; i < MAX_VERTICES; i++) 
    {
      if (!visited[i] && Jump(G[V], G[i])) 
      {
        int answer = DFS(i, G);
        if (answer == 1) 
        {
          return YES; // 可以逃出生天
        }
      }
    }
  }
 
  return NO; // 无法逃出生天
}

end



目录
相关文章
|
18天前
|
算法 数据处理 C语言
C语言中的位运算技巧,涵盖基本概念、应用场景、实用技巧及示例代码,并讨论了位运算的性能优势及其与其他数据结构和算法的结合
本文深入解析了C语言中的位运算技巧,涵盖基本概念、应用场景、实用技巧及示例代码,并讨论了位运算的性能优势及其与其他数据结构和算法的结合,旨在帮助读者掌握这一高效的数据处理方法。
29 1
|
26天前
|
存储 算法 搜索推荐
【趣学C语言和数据结构100例】91-95
本文涵盖多个经典算法问题的C语言实现,包括堆排序、归并排序、从长整型变量中提取偶数位数、工人信息排序及无向图是否为树的判断。通过这些问题,读者可以深入了解排序算法、数据处理方法和图论基础知识,提升编程能力和算法理解。
43 4
|
26天前
|
存储 机器学习/深度学习 搜索推荐
【趣学C语言和数据结构100例】86-90
本文介绍并用C语言实现了五种经典排序算法:直接插入排序、折半插入排序、冒泡排序、快速排序和简单选择排序。每种算法都有其特点和适用场景,如直接插入排序适合小规模或基本有序的数据,快速排序则适用于大规模数据集,具有较高的效率。通过学习这些算法,读者可以加深对数据结构和算法设计的理解,提升解决实际问题的能力。
39 4
|
26天前
|
存储 算法 数据处理
【趣学C语言和数据结构100例】81-85
本文介绍了五个经典算法问题及其C语言实现,涵盖图论与树结构的基础知识。包括使用BFS求解单源最短路径、统计有向图中入度或出度为0的点数、统计无向无权图各顶点的度、折半查找及二叉排序树的查找。这些算法不仅理论意义重大,且在实际应用中极为广泛,有助于提升编程能力和数据结构理解。
36 4
|
26天前
|
算法 数据可视化 数据建模
【趣学C语言和数据结构100例】76-80
本文介绍了五种图论算法的C语言实现,涵盖二叉树的层次遍历及广度优先搜索(BFS)和深度优先搜索(DFS)的邻接表与邻接矩阵实现。层次遍历使用队列按层访问二叉树节点;BFS利用队列从源节点逐层遍历图节点,适用于最短路径等问题;DFS通过递归或栈深入图的分支,适合拓扑排序等场景。这些算法是数据结构和算法学习的基础,对提升编程能力和解决实际问题至关重要。
44 4
|
26天前
|
存储 算法 vr&ar
【趣学C语言和数据结构100例】71-75
本文介绍了五个C语言数据结构问题及其实现,涵盖链表与二叉树操作,包括按奇偶分解链表、交换二叉树左右子树、查找节点的双亲节点、计算二叉树深度及求最大关键值。通过递归和遍历等方法,解决了理论与实际应用中的常见问题,有助于提升编程能力和数据结构理解。
35 4
|
26天前
|
存储 算法 C语言
【趣学C语言和数据结构100例】66-70
本书《趣学C语言和数据结构100例》精选了5个典型的数据结构问题及C语言实现,涵盖链表与数组操作,如有序集合的集合运算、有序序列表的合并、数组中两顺序表位置互换、三递增序列公共元素查找及奇偶数重排。通过详细解析与代码示例,帮助读者深入理解数据结构与算法设计的核心思想,提升编程技能。
32 4
|
26天前
|
存储 算法 C语言
【趣学C语言和数据结构100例】51-55
本文介绍了五个关于链表操作的C语言实现案例,包括删除单链表中的重复元素、从两个有序链表中查找公共元素、判断一个链表是否为另一链表的连续子序列、判断循环双链表是否对称及合并两个循环单链表。每个案例都详细解析了算法思路与实现方法,涵盖了链表操作的多种场景,旨在帮助读者深入理解链表数据结构的应用,提升算法设计与编程能力。
37 4
|
19天前
|
存储 缓存 算法
在C语言中,数据结构是构建高效程序的基石。本文探讨了数组、链表、栈、队列、树和图等常见数据结构的特点、应用及实现方式
在C语言中,数据结构是构建高效程序的基石。本文探讨了数组、链表、栈、队列、树和图等常见数据结构的特点、应用及实现方式,强调了合理选择数据结构的重要性,并通过案例分析展示了其在实际项目中的应用,旨在帮助读者提升编程能力。
42 5
|
19天前
|
存储 程序员 编译器
C 语言数组与指针的深度剖析与应用
在C语言中,数组与指针是核心概念,二者既独立又紧密相连。数组是在连续内存中存储相同类型数据的结构,而指针则存储内存地址,二者结合可在数据处理、函数传参等方面发挥巨大作用。掌握它们的特性和关系,对于优化程序性能、灵活处理数据结构至关重要。