Meta等最新研究:多token预测,提升大模型推理效率

简介: 【6月更文挑战第2天】Meta等机构的研究人员提出了一种新的大型语言模型训练方法——多token预测,以提高样本效率和推理速度。该方法要求模型同时预测多个接下来的token,而非传统的单一token预测,从而减少局部模式依赖,提高模型的宏观决策能力。实验表明,这种方法在提升模型性能和推理速度方面效果显著,尤其在编程任务中表现出色。然而,多token预测可能需要更多计算资源,并不适用于所有NLP任务,其在自然语言处理领域的应用仍有待深入研究。论文链接:https://arxiv.org/abs/2404.19737

在人工智能领域,大型语言模型(LLMs)的发展日新月异,它们通过学习海量文本数据,不断优化自身的语言理解和生成能力。近期,Meta等机构的研究人员在这一领域取得了重要进展,他们提出了一种新的训练方法——多token预测,旨在提高模型的样本效率和推理速度。这项研究成果在预印本服务器arXiv上发表,迅速引起了学术界和工业界的广泛关注。

传统的大型语言模型,如GPT和Llama,通常采用下一个token预测损失(next-token prediction loss)作为训练目标。这种方法虽然在语言生成任务上取得了显著成就,但存在一定的局限性。具体来说,它倾向于捕捉局部模式,而忽略了更宏观的决策过程。这导致模型需要比人类儿童更多的数据才能达到相同的语言流利度水平。

为了解决这一问题,研究人员提出了多token预测的训练方法。与一次只预测一个token不同,新方法要求模型在训练语料库的每个位置同时预测接下来的n个token。实验表明,这种方法不仅提高了模型的样本效率,而且在训练时间上没有额外开销,对于代码和自然语言模型都有益。

研究人员通过一系列大规模实验验证了多token预测的有效性。他们训练了不同规模的模型,从300M到13B参数不等,并在多个基准测试上进行了评估。结果表明,随着模型规模的增大,多token预测的优势愈发明显。特别是在编程任务上,13B参数的模型在HumanEval和MBPP基准测试中解决问题的能力分别提高了12%和17%。

此外,多token预测还有助于提升模型的推理速度。实验显示,使用4-token预测训练的模型在推理时速度可提高至3倍,即使在大批量处理时也表现优异。

研究人员进一步探讨了多token预测为何能带来性能上的提升。他们认为,这种方法减少了训练时教师强制(teacher forcing)和推理时自回归生成(autoregressive generation)之间的分布差异。换句话说,多token预测使模型在训练时就能考虑到更长远的依赖关系,从而在实际应用中生成更连贯、更准确的文本。

从信息论的角度来看,多token预测通过增加模型对后续token的预测准确性,强调了文本生成中的关键选择点。这对于那些对整体文本结构有重要影响的决策尤为重要。

尽管多token预测在提高大型语言模型的效率和速度方面显示出巨大潜力,但也存在一些局限性。首先,这种方法可能需要更多的计算资源,尤其是在模型规模较大时。其次,多token预测可能在某些特定的NLP任务上并不总是优于传统的单token预测,例如在某些标准选择题任务和基于负对数似然的基准测试中,多token预测模型并未显示出明显优势。

此外,多token预测在自然语言处理任务中的应用还需要进一步研究。研究人员指出,对于多选题和基于可能性的基准测试,目前的评估方法可能不足以有效衡量语言模型的生成能力。

论文地址:https://arxiv.org/abs/2404.19737

目录
相关文章
|
4月前
|
负载均衡 测试技术 调度
大模型分布式推理:张量并行与流水线并行技术
本文深入探讨大语言模型分布式推理的核心技术——张量并行与流水线并行。通过分析单GPU内存限制下的模型部署挑战,详细解析张量并行的矩阵分片策略、流水线并行的阶段划分机制,以及二者的混合并行架构。文章包含完整的分布式推理框架实现、通信优化策略和性能调优指南,为千亿参数大模型的分布式部署提供全面解决方案。
999 4
|
4月前
|
机器学习/深度学习 缓存 监控
大模型推理优化技术:KV缓存机制详解
本文深入探讨了大语言模型推理过程中的关键技术——KV缓存(Key-Value Cache)机制。通过对Transformer自注意力机制的分析,阐述了KV缓存的工作原理、实现方式及其对推理性能的显著优化效果。文章包含具体的代码实现和性能对比数据,为开发者理解和应用这一关键技术提供实践指导。
1480 8
|
6月前
|
并行计算 PyTorch 调度
大模型推理显存优化系列(4):eLLM-大模型推理中的弹性显存管理和优化
本文简要介绍eLLM相关技术挑战、总体设计和初步性能评估
|
6月前
|
负载均衡 并行计算 异构计算
大模型训练推理优化(5): FlexLink —— NVLink 带宽无损提升27%
本期我们将介绍蚂蚁集团ASystem团队在大模型通信优化上的新工作FlexLink,旨在通过动态聚合多路通信(NVLink,PCIe,RDMA),在H800等典型硬件上将典型通信算子如(AllReduce, All Gather)吞吐提升最高达27%,尤其适合大模型长序列推理(Prefill阶段),及训练等通信密集的带宽bound场景。方案对精度无影响。
|
4月前
|
机器学习/深度学习 缓存 自然语言处理
【万字长文】大模型训练推理和性能优化算法总结和实践
我们是阿里云公共云 AI 汽车行业大模型技术团队,致力于通过专业的全栈 AI 技术推动 AI 的落地应用。
2260 39
【万字长文】大模型训练推理和性能优化算法总结和实践
|
4月前
|
机器学习/深度学习 存储 并行计算
大模型推理加速技术:FlashAttention原理与实现
本文深入解析大语言模型推理加速的核心技术——FlashAttention。通过分析传统注意力机制的计算瓶颈,详细阐述FlashAttention的IO感知算法设计、前向反向传播实现,以及其在GPU内存层次结构中的优化策略。文章包含完整的CUDA实现示例、性能基准测试和实际部署指南,为开发者提供高效注意力计算的全套解决方案。
612 10
|
5月前
|
机器学习/深度学习 算法 数据可视化
从零开始训练推理模型:GRPO+Unsloth改造Qwen实战指南
推理型大语言模型兴起,通过先思考再作答提升性能。本文介绍GRPO等强化学习算法,详解其原理并动手用Qwen2.5-3B训练推理模型,展示训练前后效果对比,揭示思维链生成的实现路径。
738 2
从零开始训练推理模型:GRPO+Unsloth改造Qwen实战指南

热门文章

最新文章