【YOLOv8改进】MSBlock : 分层特征融合策略 (论文笔记+引入代码)

简介: YOLO-MS是一个创新的实时目标检测器,通过多尺度构建块(MS-Block)和异构Kernel选择(HKS)协议提升多尺度特征表示能力。它在不依赖预训练权重和大型数据集的情况下,在MS COCO上超越了YOLO-v7和RTMDet,例如YOLO-MS XS版本(4.5M参数,8.7G FLOPs)达到了43%+的AP,比RTMDet高2%+。MS-Block利用分层特征融合和不同大小的卷积,而HKS协议根据网络深度调整Kernel大小,优化多尺度语义信息捕获。此外,YOLO-MS的模块化设计允许其作为即插即用的组件集成到其他YOLO模型中,提升它们的检测性能。

YOLO目标检测创新改进与实战案例专栏

专栏目录: YOLO有效改进系列及项目实战目录 包含卷积,主干 注意力,检测头等创新机制 以及 各种目标检测分割项目实战案例

专栏链接: YOLO基础解析+创新改进+实战案例

摘要

我们旨在为目标检测领域提供一种高效且性能卓越的目标检测器,称为YOLO-MS。其核心设计基于一系列调查研究,关于不同核心大小的卷积如何影响不同尺度物体的检测性能。研究结果是一种新策略,能够显著增强实时目标检测器的多尺度特征表示能力。为验证我们策略的有效性,我们构建了一个网络架构,命名为YOLO-MS。我们从零开始在MS COCO数据集上训练我们的YOLO-MS,不依赖于任何其他大规模数据集,如ImageNet,或预训练权重。无需任何附加装置,我们的YOLO-MS就超越了最新的实时目标检测器,包括YOLO-v7和RTMDet,当使用可比较的参数数量和FLOPs时。以YOLO-MS的XS版本为例,仅有4.5M的可学习参数和8.7G FLOPs,就能在MS COCO上达到43%+的AP得分,比相同模型大小的RTMDet高出约2%+。此外,我们的工作还可以作为一个即插即用的模块用于其他YOLO模型。通常,我们的方法显著提高了YOLOv8的AP,从37%+提高到了40%+,而且使用的参数和FLOPs还更少。

创新点

  1. 多尺度构建块(MS-Block)设计:YOLO-MS引入了MS-Block,一个具有分层特征融合策略的构建块,旨在增强实时目标检测器在提取多尺度特征时的能力。MS-Block通过将输入特征分割并传递到多个分支中,并在每个分支中应用具有不同Kernel大小的Inverted Bottleneck Block,来编码不同尺度的特征。

  2. 异构Kernel选择(HKS)协议:为了更有效地捕捉多尺度语义信息,YOLO-MS提出了一种在不同阶段中采用不同大小Kernel的策略。具体地,在编码器的浅层使用小Kernel卷积处理高分辨率特征,在深层使用大Kernel卷积捕捉更广泛的信息。这种设计使得YOLO-MS能够在保持高效推理的同时,提升对不同尺寸目标的检测性能。

  3. 高效性能与准确性的平衡:YOLO-MS在保持较低计算复杂度的条件下,实现了优于当时最先进实时目标检测器的性能。这得益于其精心设计的网络结构和创新的特征表示策略,如MS-Block和HKS协议,使得模型在不依赖任何大规模数据集预训练的情况下,也能在公开数据集上达到高精度。

  4. 即插即用的模块化设计:YOLO-MS不仅作为一个独立的目标检测模型存在,其核心组件如MS-Block也可以作为即插即用的模块,集成到其他YOLO系列模型中,以提升这些模型在多尺度目标检测任务上的性能。# MSBlock模块,包含多个MSBlockLayer,用于处理不同尺度的特征

yolov8 引入


 class MSBlock(nn.Module):
    def __init__(self, inc, ouc, kernel_sizes, in_expand_ratio=3., mid_expand_ratio=2., layers_num=3,
                 in_down_ratio=2.)-> None:
        super().__init__()
        # 根据扩展比例计算中间通道数
        in_channel = int(inc * in_expand_ratio // in_down_ratio)
        self.mid_channel = in_channel // len(kernel_sizes)
        groups = int(self.mid_channel * mid_expand_ratio)
        # 输入卷积层
        self.in_conv = Conv(inc, in_channel)

        self.mid_convs = []
        # 根据给定的核大小创建多个MSBlockLayer
        for kernel_size in kernel_sizes:
            if kernel_size == 1:
                self.mid_convs.append(nn.Identity())
                continue
            mid_convs = [MSBlockLayer(self.mid_channel, groups, k=kernel_size) for _ in range(int(layers_num))]
            self.mid_convs.append(nn.Sequential(*mid_convs))
        self.mid_convs = nn.ModuleList(self.mid_convs)
        # 输出卷积层
        self.out_conv = Conv(in_channel, ouc, 1)

        self.attention = None

    def forward(self, x):
        out = self.in_conv(x)
        channels = []
        # 分别处理每个通道范围内的特征,并合并
        for i, mid_conv in enumerate(self.mid_convs):
            channel = out[:, i * self.mid_channel:(i + 1) * self.mid_channel, ...]
            if i >= 1:
                channel = channel + channels[i - 1]
            channel = mid_conv(channel)
            channels.append(channel)
        out = torch.cat(channels, dim=1)
        out = self.out_conv(out)
        if self.attention is not None:
            out = self.attention(out)
        return out# MSBlock模块,包含多个MSBlockLayer,用于处理不同尺度的特征
class MSBlock(nn.Module):
    def __init__(self, inc, ouc, kernel_sizes, in_expand_ratio=3., mid_expand_ratio=2., layers_num=3,
                 in_down_ratio=2.)-> None:
        super().__init__()
        # 根据扩展比例计算中间通道数
        in_channel = int(inc * in_expand_ratio // in_down_ratio)
        self.mid_channel = in_channel // len(kernel_sizes)
        groups = int(self.mid_channel * mid_expand_ratio)
        # 输入卷积层
        self.in_conv = Conv(inc, in_channel)

        self.mid_convs = []
        # 根据给定的核大小创建多个MSBlockLayer
        for kernel_size in kernel_sizes:
            if kernel_size == 1:
                self.mid_convs.append(nn.Identity())
                continue
            mid_convs = [MSBlockLayer(self.mid_channel, groups, k=kernel_size) for _ in range(int(layers_num))]
            self.mid_convs.append(nn.Sequential(*mid_convs))
        self.mid_convs = nn.ModuleList(self.mid_convs)
        # 输出卷积层
        self.out_conv = Conv(in_channel, ouc, 1)

        self.attention = None

    def forward(self, x):
        out = self.in_conv(x)
        channels = []
        # 分别处理每个通道范围内的特征,并合并
        for i, mid_conv in enumerate(self.mid_convs):
            channel = out[:, i * self.mid_channel:(i + 1) * self.mid_channel, ...]
            if i >= 1:
                channel = channel + channels[i - 1]
            channel = mid_conv(channel)
            channels.append(channel)
        out = torch.cat(channels, dim=1)
        out = self.out_conv(out)
        if self.attention is not None:
            out = self.attention(out)
        return out

task与yaml配置

详见:https://blog.csdn.net/shangyanaf/article/details/137029177

相关文章
|
28天前
|
机器学习/深度学习 计算机视觉
【YOLOv8改进】CoordAttention: 用于移动端的高效坐标注意力机制 (论文笔记+引入代码)
该专栏聚焦YOLO目标检测的创新改进与实战,介绍了一种新的移动网络注意力机制——坐标注意力。它将位置信息融入通道注意力,通过1D特征编码处理,捕获长距离依赖并保持位置精度。生成的注意力图能增强目标表示,适用于MobileNetV2、MobileNeXt和EfficientNet等网络,提高性能,且几乎不增加计算成本。在ImageNet分类和下游任务(目标检测、语义分割)中表现出色。YOLOv8中引入了CoordAtt模块,实现位置敏感的注意力。更多详情及配置见相关链接。
|
28天前
|
机器学习/深度学习 存储 测试技术
【YOLOv8改进】 YOLOv8 更换骨干网络之 GhostNet :通过低成本操作获得更多特征 (论文笔记+引入代码).md
YOLO目标检测专栏探讨了卷积神经网络的创新改进,如Ghost模块,它通过低成本运算生成更多特征图,降低资源消耗,适用于嵌入式设备。GhostNet利用Ghost模块实现轻量级架构,性能超越MobileNetV3。此外,文章还介绍了SegNeXt,一个高效卷积注意力网络,提升语义分割性能,参数少但效果优于EfficientNet-L2。专栏提供YOLO相关基础解析、改进方法和实战案例。
|
1月前
|
机器学习/深度学习 编解码 算法
YOLOv8改进 | 主干网络 | 增加网络结构增强小目标检测能力【独家创新——附结构图】
YOLOv8在小目标检测上存在挑战,因卷积导致信息丢失。本文教程将原网络结构替换为更适合小目标检测的backbone,并提供结构图。通过讲解原理和手把手教学,指导如何修改代码,提供完整代码实现,适合新手实践。文章探讨了大特征图对小目标检测的重要性,如细节保留、定位精度、特征丰富度和上下文信息,并介绍了FPN等方法。YOLOv8流程包括预处理、特征提取、融合和检测。修改后的网络结构增加了上采样和concatenate步骤,以利用更大特征图检测小目标。完整代码和修改后的结构图可在文中链接获取。
|
15天前
|
机器学习/深度学习 计算机视觉
【保姆级教程|YOLOv8添加注意力机制】【2】在C2f结构中添加ShuffleAttention注意力机制并训练
【保姆级教程|YOLOv8添加注意力机制】【2】在C2f结构中添加ShuffleAttention注意力机制并训练
|
15天前
|
机器学习/深度学习
【保姆级教程|YOLOv8添加注意力机制】【1】添加SEAttention注意力机制步骤详解、训练及推理使用
【保姆级教程|YOLOv8添加注意力机制】【1】添加SEAttention注意力机制步骤详解、训练及推理使用
|
28天前
|
机器学习/深度学习 数据可视化 计算机视觉
【YOLOv8改进】MCA:用于图像识别的深度卷积神经网络中的多维协作注意力 (论文笔记+引入代码)
YOLO目标检测专栏介绍了YOLO的创新改进和实战案例,包括多维协作注意力(MCA)机制,它通过三分支架构同时处理通道、高度和宽度注意力,提高CNN性能。MCA设计了自适应组合和门控机制,增强特征表示,且保持轻量化。该模块适用于各种CNN,实验证明其在图像识别任务上的优越性。此外,文章还展示了如何在YOLOv8中引入MCA层的代码实现和相关任务配置。
|
1月前
|
机器学习/深度学习 计算机视觉 网络架构
【FCN】端到端式语义分割的开篇之作! 从中窥探后续语义分割网络的核心模块(一)
【FCN】端到端式语义分割的开篇之作! 从中窥探后续语义分割网络的核心模块(一)
346 0
【FCN】端到端式语义分割的开篇之作! 从中窥探后续语义分割网络的核心模块(一)
|
1月前
|
机器学习/深度学习 计算机视觉
YOLOv8改进 | 细节涨点篇 | UNetv2提出的一种SDI多层次特征融合模块(分割高效涨点)
YOLOv8改进 | 细节涨点篇 | UNetv2提出的一种SDI多层次特征融合模块(分割高效涨点)
360 2
|
机器学习/深度学习 人工智能 算法
目标检测模型设计准则 | YOLOv7参考的ELAN模型解读,YOLO系列模型思想的设计源头
目标检测模型设计准则 | YOLOv7参考的ELAN模型解读,YOLO系列模型思想的设计源头
778 0
目标检测模型设计准则 | YOLOv7参考的ELAN模型解读,YOLO系列模型思想的设计源头
|
机器学习/深度学习 人工智能 算法
目标检测模型设计准则 | YOLOv7参考的ELAN模型解读,YOLO系列模型思想的设计源头(一)
目标检测模型设计准则 | YOLOv7参考的ELAN模型解读,YOLO系列模型思想的设计源头(一)
407 0