【YOLOv8改进】BiFPN:加权双向特征金字塔网络 (论文笔记+引入代码)

简介: 该专栏深入研究了YOLO目标检测的神经网络架构优化,提出了加权双向特征金字塔网络(BiFPN)和复合缩放方法,以提升模型效率。BiFPN通过双向跨尺度连接和加权融合增强信息传递,同时具有自适应的网络拓扑结构。结合EfficientNet,构建了EfficientDet系列检测器,在效率和准确性上超越先前技术。此外,介绍了YOLOv8如何引入MPDIoU并应用BiFPN进行可学习权重的特征融合。更多详情可参考提供的专栏链接。

YOLO目标检测创新改进与实战案例专栏

专栏目录: YOLO有效改进系列及项目实战目录 包含卷积,主干 注意力,检测头等创新机制 以及 各种目标检测分割项目实战案例

专栏链接: YOLO基础解析+创新改进+实战案例

摘要

在计算机视觉领域,模型效率的重要性日益增加。在本文中,我们系统地研究了用于目标检测的神经网络架构设计选择,并提出了几个关键优化以提高效率。首先,我们提出了一种加权双向特征金字塔网络(BiFPN),它允许轻松快速地进行多尺度特征融合;其次,我们提出了一种复合缩放方法,该方法统一缩放了所有主干网络、特征网络以及框/类别预测网络的分辨率、深度和宽度。基于这些优化和更好的主干网络,我们开发了一种新的目标检测器系列,称为EfficientDet,它在广泛的资源约束条件下始终比先前的技术实现了更好的效率。特别是,我们的EfficientDet-D7在COCO test-dev上以单模型和单尺度实现了55.1 AP的最先

创新点

BiFPN(双向特征金字塔网络)的创新点可以从以下几个方面总结:

  1. 高效的双向跨尺度连接:BiFPN的核心创新之一是双向跨尺度连接,允许特征在不同层级之间通过自上而下和自下而上的路径进行更全面的信息传递和融合。这与传统的FPN和PAN不同,后者主要采用自上而下的特征传播方式。

  2. 加权特征融合:BiFPN为每条连接边引入了可学习的权重,允许模型根据不同特征的重要性自适应地调整融合方式。这种加权方法优化了多尺度特征的融合效果,提高了特征表示的准确性。

  3. 不规则特征网络拓扑:BiFPN不局限于固定的网络结构,而是使用神经网络架构搜索技术来寻找最优的特征网络拓扑结构。这提供了更大的灵活性,适应不同的任务和资源约束。

  4. 特征调整和特征选择:在特征融合过程中,BiFPN不仅仅是简单地合并特征,而是通过权重调整和动态特征选择,优化融合结果,确保重要特征得到有效利用。

  5. 与EfficientDet的结合:BiFPN是EfficientDet架构的一部分,其中EfficientNet作为骨干网络,BiFPN负责特征融合。BiFPN的设计允许模型在保持准确性的同时实现高效率,特别是在模型放大时,BiFPN的深度和宽度根据复合缩放方法进行调整。

yolov8 引入MPDIoU

 # 结合BiFPN 设置可学习参数 学习不同分支的权重
# 两个分支add操作
class BiFPN_Add2(nn.Module):
    def __init__(self, c1, c2):
        super(BiFPN_Add2, self).__init__()
        # 设置可学习参数 nn.Parameter的作用是:将一个不可训练的类型Tensor转换成可以训练的类型parameter
        # 并且会向宿主模型注册该参数 成为其一部分 即model.parameters()会包含这个parameter
        # 从而在参数优化的时候可以自动一起优化
        self.w = nn.Parameter(torch.ones(2, dtype=torch.float32), requires_grad=True)
        self.epsilon = 0.0001
        self.conv = nn.Conv2d(c1, c2, kernel_size=1, stride=1, padding=0)
        self.silu = nn.SiLU()

    def forward(self, x):
        w = self.w
        weight = w / (torch.sum(w, dim=0) + self.epsilon)
        return self.conv(self.silu(weight[0] * x[0] + weight[1] * x[1]))

task与yaml配置

详见:https://blog.csdn.net/shangyanaf/article/details/136021981

相关文章
|
22天前
|
机器学习/深度学习 计算机视觉 网络架构
【YOLO11改进 - C3k2融合】C3k2融合YOLO-MS的MSBlock : 分层特征融合策略,轻量化网络结构
【YOLO11改进 - C3k2融合】C3k2融合YOLO-MS的MSBlock : 分层特征融合策略,轻量化网络结构
|
1月前
|
算法 计算机视觉 Python
YOLOv8优改系列二:YOLOv8融合ATSS标签分配策略,实现网络快速涨点
本文介绍了如何将ATSS标签分配策略融合到YOLOv8中,以提升目标检测网络的性能。通过修改损失文件、创建ATSS模块文件和调整训练代码,实现了网络的快速涨点。ATSS通过自动选择正负样本,避免了人工设定阈值,提高了模型效率。文章还提供了遇到问题的解决方案,如模块载入和环境配置问题。
75 0
YOLOv8优改系列二:YOLOv8融合ATSS标签分配策略,实现网络快速涨点
|
1月前
|
机器学习/深度学习 计算机视觉 异构计算
YOLOv8优改系列一:YOLOv8融合BiFPN网络,实现网络快速涨点
本文介绍了将BiFPN网络应用于YOLOv8以增强网络性能的方法。通过双向跨尺度连接和加权特征融合,BiFPN能有效捕获多尺度特征,提高目标检测效果。文章还提供了详细的代码修改步骤,包括修改配置文件、创建模块文件、修改训练代码等,以实现YOLOv8与BiFPN的融合。
109 0
YOLOv8优改系列一:YOLOv8融合BiFPN网络,实现网络快速涨点
|
1月前
|
机器学习/深度学习 计算机视觉 异构计算
YOLOv8优改系列一:YOLOv8融合BiFPN网络,实现网络快速涨点
该专栏专注于YOLOv8的 Neck 部分改进,融合了 BiFPN 网络,大幅提升检测性能。BiFPN 通过高效的双向跨尺度连接和加权特征融合,解决了传统 FPN 的单向信息流限制。文章详细介绍了 BiFPN 的原理及其实现方法,并提供了核心代码修改指导。点击链接订阅专栏,每周定时更新,助您快速提升模型效果。推荐指数:⭐️⭐️⭐️⭐️,涨点指数:⭐️⭐️⭐️⭐️。
111 0
|
4月前
|
机器学习/深度学习 计算机视觉
【YOLOv8改进 - 注意力机制】c2f结合CBAM:针对卷积神经网络(CNN)设计的新型注意力机制
【YOLOv8改进 - 注意力机制】c2f结合CBAM:针对卷积神经网络(CNN)设计的新型注意力机制
|
3天前
|
存储 SQL 安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
【10月更文挑战第39天】在数字化时代,网络安全和信息安全成为了我们生活中不可或缺的一部分。本文将介绍网络安全漏洞、加密技术和安全意识等方面的内容,帮助读者更好地了解网络安全的重要性,并提供一些实用的技巧和方法来保护自己的信息安全。
14 2
|
4天前
|
安全 网络安全 数据安全/隐私保护
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
【10月更文挑战第38天】本文将探讨网络安全与信息安全的重要性,包括网络安全漏洞、加密技术和安全意识等方面。我们将通过代码示例和实际操作来展示如何保护网络和信息安全。无论你是个人用户还是企业,都需要了解这些知识以保护自己的网络安全和信息安全。
|
3天前
|
存储 安全 网络安全
云计算与网络安全:探索云服务中的信息安全策略
【10月更文挑战第39天】随着云计算的飞速发展,越来越多的企业和个人将数据和服务迁移到云端。然而,随之而来的网络安全问题也日益突出。本文将从云计算的基本概念出发,深入探讨在云服务中如何实施有效的网络安全和信息安全措施。我们将分析云服务模型(IaaS, PaaS, SaaS)的安全特性,并讨论如何在这些平台上部署安全策略。文章还将涉及最新的网络安全技术和实践,旨在为读者提供一套全面的云计算安全解决方案。
|
3天前
|
存储 安全 网络安全
网络安全与信息安全:漏洞、加密技术与安全意识的交织
【10月更文挑战第39天】在数字化时代,网络安全与信息安全成为保护个人隐私和组织资产的重要屏障。本文将探讨网络安全中的常见漏洞、加密技术的应用以及提升安全意识的重要性。通过具体案例分析,我们将深入了解网络攻击的手段和防御策略,同时提供实用建议,以增强读者对网络安全的认识和防护能力。
|
3天前
|
安全 网络安全 数据安全/隐私保护
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
【10月更文挑战第39天】在数字化时代,网络安全和信息安全已成为我们生活中不可或缺的一部分。本文将探讨网络安全漏洞、加密技术以及安全意识等方面的内容,帮助读者更好地了解网络安全的重要性,并提供一些实用的技巧和建议来保护个人信息和设备安全。

热门文章

最新文章