多线程(JUC, ReentrantLock, 原子类, 线程池, 信号量 Semaphore, CountDownLatch)

简介: 多线程(JUC, ReentrantLock, 原子类, 线程池, 信号量 Semaphore, CountDownLatch)

JUC

Java.util.concurrent 包, 存放了并发编程相关的组件, 目的是更好的支持高并发任务 (多线程只是实现并发编程的一种具体方式 …)


ReentrantLock

  • synchronized 对对象加锁, 保护临界资源
  • ReentreatLock 使用 lock 方法和 unlock 方法,加锁对象是 ReentrantLock 的实例

核心方法

  • lock(): 加锁, 获取不到锁就死等
  • trylock(超时时间):尝试加锁, 如果获取不到锁, 等待一段时间后就放弃加锁
  • unlock(): 解锁

ReentrantLock 使用

由于 reentreatLock 需要手动释放, 因此推荐 try finally 的写法

// ReentrantLock 使用
public class ThreadDemo12 {
    public static void main(String[] args) {
        // true -- 公平锁       false/默认 都是非公平锁
        ReentrantLock reentrantLock = new ReentrantLock(true);
    boolean ok = reentrantLock.tryLock();
    // boolean ok = reentrantLock.lock()
        try {
            
            if (ok) {
                System.out.println("代码逻辑");
            }else {
                System.out.println("代码逻辑");
            }
        }finally {
            reentrantLock.unlock();
        }
    }

ReentrantLock 和 synchronized 比较

  1. synchronized 是关键字, 是 JVM 内部实现的
    ReentrantLock 是标准库的一个类, 在 JVM 外实现 (基于 Java 实现)
  1. synchronized 是非公平锁
    ReentrantLock 默认是非公平锁, 但是提供了公平锁版本的实现
    ReentrantLock reentrantLock = new ReentrantLock(true);
  2. ReentrantLock 提供更灵活的加锁方式:
    ReentrantLock reentrantLock = new ReentrantLock(true);
    reentrantLock.tryLock();
  3. ReentrantLock 提供更强大, 更方便的等待通知机制
    synchronized 搭配 wait() notify()使用, notify() 是随机唤醒等待队列的线程
    ReentrantLock 搭配 Condition 类. 可以唤醒指定的线程

原子类

原子类内部用的是 CAS 实现, 更高效的解决了线程安全问题

原子类提供了线程安全的自增自减等操作


原子类有以下几种 :


原子类的常见方法 (以 AtomicInteger 为例)

public class Main {
    public static void main(String[] args) {
        
        Scanner scanner = new Scanner(System.in);
        int x = scanner.nextInt();

        AtomicInteger atomicInteger = new AtomicInteger(x);
        atomicInteger.getAndIncrement();// i++;
        atomicInteger.incrementAndGet();// ++i;
        atomicInteger.getAndDecrement();// i--;
        atomicInteger.decrementAndGet();// --i;
        atomicInteger.addAndGet(x);     // i+=x;
        atomicInteger.get();            // x
    }
}

线程池

之前写过, 挂个链接这里不再复制粘贴了 — https://editor.csdn.net/md/?articleId=136715895


信号量 Semaphore

信号量表示 "可用资源的个数" .本质上是一个计数器

Semaphore 提供了 P,V 操作

P 操作: 申请一个可用资源, 计数器 - 1

V 操作: 释放一个可用资源, 计数器 + 1

当可用资源个数为 0 时, 再进行 P 操作, 就会出现阻塞等待清空 (资源为零, 无法继续消耗了), 直到有线程让信号量大于零, 才会唤醒该阻塞的线程

锁 可可以视为计数器为 1 的信号量, 二元信号量

  • 锁是信号量的一种特殊情况
  • 信号量是锁的一般表达

总结: 信号量的表达含义范围更广


Semaphore 的简单使用

代码示例

public class Main {
    public static void main(String[] args) {
        // 参数是可用资源的个数(信号量的初始值)
        Semaphore semaphore = new Semaphore(4);


        for (int i=0;i<20;i++) {
            Thread t = new Thread(() -> {
                try {
                    System.out.println("申请资源");
                    semaphore.acquire();

                    System.out.println("持有资源");
                    Thread.sleep(1000);

                    System.out.println("释放资源");
                    semaphore.release();
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }

            });
            t.start();
        }
    }
}

运行结果

有兴趣可以仔细看看运行结果, 同一时刻最多只有 4个线程能够持有锁, 这就是信号量的存在意义


CountDownLatch

同时等待 N 个任务执行结束 (和 join() 功能类似)


核心API

  • await(): 阻塞等待线程, 直至任务全部完成
  • getCount(): 获取剩余未完成任务个数
  • countDown(): 未完成任务个数 -1

代码示例

public class CountDownLatchDemo {
    public static void main(String[] args) throws InterruptedException {
        // 参数代表需要等待的任务数量
        CountDownLatch countDownLatch = new CountDownLatch(5);

        for (int i = 0; i < 5; i++) {
            Thread t = new Thread(() -> {
                System.out.println("完成一个任务");
                // countDown() 方法, 代表完成一个任务
                countDownLatch.countDown();
            });

            t.start();
            Thread.sleep(1000);
        }
        // await()方法, 用于阻塞线程
        // 直至 countDownLatch 内任务全部完成, 才会往下继续走
        countDownLatch.await();
        System.out.println("任务全部完成");
    }
}

运行结果

运行过代码会发现, 每间隔一秒输出一次 “完成一个任务”, 5秒之后输出 “任务全部完成”

目录
相关文章
|
2月前
|
Java 开发者
在Java多线程编程中,创建线程的方法有两种:继承Thread类和实现Runnable接口
【10月更文挑战第20天】在Java多线程编程中,创建线程的方法有两种:继承Thread类和实现Runnable接口。本文揭示了这两种方式的微妙差异和潜在陷阱,帮助你更好地理解和选择适合项目需求的线程创建方式。
27 3
|
2月前
|
Java 开发者
在Java多线程编程中,选择合适的线程创建方法至关重要
【10月更文挑战第20天】在Java多线程编程中,选择合适的线程创建方法至关重要。本文通过案例分析,探讨了继承Thread类和实现Runnable接口两种方法的优缺点及适用场景,帮助开发者做出明智的选择。
23 2
|
2月前
|
Java
Java中多线程编程的基本概念和创建线程的两种主要方式:继承Thread类和实现Runnable接口
【10月更文挑战第20天】《JAVA多线程深度解析:线程的创建之路》介绍了Java中多线程编程的基本概念和创建线程的两种主要方式:继承Thread类和实现Runnable接口。文章详细讲解了每种方式的实现方法、优缺点及适用场景,帮助读者更好地理解和掌握多线程编程技术,为复杂任务的高效处理奠定基础。
38 2
|
2月前
|
Java 开发者
Java多线程初学者指南:介绍通过继承Thread类与实现Runnable接口两种方式创建线程的方法及其优缺点
【10月更文挑战第20天】Java多线程初学者指南:介绍通过继承Thread类与实现Runnable接口两种方式创建线程的方法及其优缺点,重点解析为何实现Runnable接口更具灵活性、资源共享及易于管理的优势。
44 1
|
2月前
|
安全 Java 开发者
Java多线程中的`wait()`、`notify()`和`notifyAll()`方法,探讨了它们在实现线程间通信和同步中的关键作用
本文深入解析了Java多线程中的`wait()`、`notify()`和`notifyAll()`方法,探讨了它们在实现线程间通信和同步中的关键作用。通过示例代码展示了如何正确使用这些方法,并分享了最佳实践,帮助开发者避免常见陷阱,提高多线程程序的稳定性和效率。
50 1
|
2月前
|
Java
在Java多线程编程中,`wait()` 和 `notify()/notifyAll()` 方法是线程间通信的核心机制。
在Java多线程编程中,`wait()` 和 `notify()/notifyAll()` 方法是线程间通信的核心机制。它们通过基于锁的方式,使线程在条件不满足时进入休眠状态,并在条件成立时被唤醒,从而有效解决数据一致性和同步问题。本文通过对比其他通信机制,展示了 `wait()` 和 `notify()` 的优势,并通过生产者-消费者模型的示例代码,详细说明了其使用方法和重要性。
31 1
|
1月前
|
数据采集 Java Python
爬取小说资源的Python实践:从单线程到多线程的效率飞跃
本文介绍了一种使用Python从笔趣阁网站爬取小说内容的方法,并通过引入多线程技术大幅提高了下载效率。文章首先概述了环境准备,包括所需安装的库,然后详细描述了爬虫程序的设计与实现过程,包括发送HTTP请求、解析HTML文档、提取章节链接及多线程下载等步骤。最后,强调了性能优化的重要性,并提醒读者遵守相关法律法规。
62 0
|
2月前
|
存储 消息中间件 资源调度
C++ 多线程之初识多线程
这篇文章介绍了C++多线程的基本概念,包括进程和线程的定义、并发的实现方式,以及如何在C++中创建和管理线程,包括使用`std::thread`库、线程的join和detach方法,并通过示例代码展示了如何创建和使用多线程。
58 1
C++ 多线程之初识多线程
|
3月前
|
数据采集 负载均衡 安全
LeetCode刷题 多线程编程九则 | 1188. 设计有限阻塞队列 1242. 多线程网页爬虫 1279. 红绿灯路口
本文提供了多个多线程编程问题的解决方案,包括设计有限阻塞队列、多线程网页爬虫、红绿灯路口等,每个问题都给出了至少一种实现方法,涵盖了互斥锁、条件变量、信号量等线程同步机制的使用。
LeetCode刷题 多线程编程九则 | 1188. 设计有限阻塞队列 1242. 多线程网页爬虫 1279. 红绿灯路口
|
2月前
|
存储 前端开发 C++
C++ 多线程之带返回值的线程处理函数
这篇文章介绍了在C++中使用`async`函数、`packaged_task`和`promise`三种方法来创建带返回值的线程处理函数。
79 6