Java初识泛型 | 如何通过泛型类/泛型方法实现求数组元素最大值?

简介: 这是一个关于如何使用泛型在Java中找到数组中最大值的问题。

一、引言


给定一个整型数组,求数组中所有元素的最大值


该题同样是编程入门的基础题。关键在于拓展:能不能通过程序,实现给定的任意类型的数组,都能求出数组中所有元素的最大值?

这里我们先给出整型数组求最大值的代码,作为基础:


public class Util {
    public int findMaxInt(int[] array) {
        int max = array[0];
        for (int i = 0; i < array.length; i++) {
            if(max < array[i]) {
                max = array[i];
            }
        }
        return max;
    }
}


调用并运行:

public class Test {
    public static void main(String[] args) {
        int[] array = {1,0,9,4,5};
        System.out.println("max is " + util.findMaxInt(array));
    }
}



接下来我们来分析,如果通过泛型类或泛型方法使程序能够适用于任意一个数据类型。


二、编程分析

1、泛型类实现


解题之前,我们首先要了解泛型、泛型上界、泛型方法的概念。对于这些概念有所遗忘的同学,可以阅读文章:🔗Java初识泛型 | 如何通过泛型类/泛型方法获取任意类型的三个数的最大值?的知识解析部分熟悉一下。


这里,我们直接讲解思路,不再进行基础知识的铺垫。


思路


按照泛型的思路,我们试着将原来的类改成泛型类。用占位符E代替原代码中所有的int。但仅仅更改这些,最后会发现编译器在比较的位置报错了:



是什么原因导致编译失败呢?



原因:max和array[i]都是E类型也就是引用类型的变量,两个引用变量之间不能用大于小于号进行大小比较。可行的方法应当是调用比较对象的compareTo()方法。但是,compareTo()方法是不能直接调用的,它要求调用的对象的类型必须实现过Comparable接口。



如图 尝试直接调用compareTo()方法失败


换句话说,它对类型E有约束,这个约束就是: 必须实现过Comparable接口。因此,这里要用到类型的上界的知识,来进行约束。


public class Util<E extends Comparable<E>> {
    ...
}


<E extends Comparable<E>> 的含义为:传入的E类型必须是实现了Comparable接口的。如果传入的类型没有实现过Comparable接口,那么编译会报错。

此时,我们可以成功地调用compareTo()方法了:



此时调用成功


整合后,便能得出完整的代码了。


代码


泛型类:


public class Util<E extends Comparable<E>> {
    public E findMax(E[] array) {
        E max = array[0];
        for (int i = 0; i < array.length; i++) {
            if(max.compareTo(array[i]) < 0) {
                max = array[i];
            }
        }
        return max;
    }
}
 


调用:


Integer


1.public class Test {
    public static void main(String[] args) {
        Util<Integer> util = new Util<>();
        Integer[] array = {1,0,9,4,5};
        System.out.println("max is " + util.findMax(array));
    }
}



Double(只需更改main中的数据类型即可,Util类不用变动)


public class Test {
    public static void main(String[] args) {
        Util<Double> util = new Util<>();
        Double[] array = {13.6,100.5,0.0,-3.1,5.8};
        System.out.println("max is " + util.findMax(array));
    }
}



String 


public class Test {
    public static void main(String[] args) {
        Util<String> util = new Util<>();
        String[] array = {"China","America","Australia","Ireland"};
        System.out.println("max is " + util.findMax(array));
    }
}



自定义的类型Tmp,已手动实现了Comparable<Tmp>接口


//Tmp.java
 
public class Tmp implements Comparable<Tmp>{
    public int parameter1;
    public String parameter2;
 
    public Tmp(int parameter1, String parameter2) {
        this.parameter1 = parameter1;
        this.parameter2 = parameter2;
    }
 
    @Override
    public int compareTo(Tmp o) {
        //以parameter2为标准来比较Tmp
        //parameter2是String类,比较可以直接调用String类的compareTo方法
        return this.parameter2.compareTo(o.parameter2);
    }
 
    @Override
    public String toString() {
        return "Tmp{" +
                "parameter1=" + parameter1 +
                ", parameter2='" + parameter2 + '\'' +
                '}';
    }
}



//Test.java
 
public class Test {
    public static void main(String[] args) {
        Util<Tmp> util = new Util<>();
        Tmp tmp1 = new Tmp(10,"substantial");
        Tmp tmp2 = new Tmp(20,"circumspect");
        Tmp tmp3 = new Tmp(5,"coby");
        Tmp[] array = {tmp1,tmp2,tmp3};
        System.out.println("max is " + util.findMax(array));
    }
}



2、泛型方法实现


思路


如果用泛型类实现,则每次使用前还需要创建类对象。能不能把这一个步骤省去呢?答案是可以的,我们可以通过静态泛型方法来完成。


按照泛型方法的语法,我们对原代码稍作修改:


public class Util {
    public static  <E>  E findMax(E[] array) {
        ...
    }
}


此时的Util类已经不再是泛型类了,而是一个普通类。通过在修饰符后添加 static <E> 将普通方法改为了静态泛型方法。但此时还不够完善,同样的,我们需要把类型参数E实现了Comparable接口这一约束体现出来。只需要把<E>改为 <E extends Comparable<E>> 即可。


代码

public class Util {
    public static  <E extends Comparable<E>>  E findMax(E[] array) {
        E max = array[0];
        for (int i = 0; i < array.length; i++) {
            if(max.compareTo(array[i]) < 0) {
                max = array[i];
            }
        }
        return max;
    }
}


此时,测试时的代码也更加简略了:


public class Test {
    public static void main(String[] args) {
        Tmp tmp1 = new Tmp(10,"substantial");
        Tmp tmp2 = new Tmp(20,"circumspect");
        Tmp tmp3 = new Tmp(5,"coby");
        Tmp[] array = {tmp1,tmp2,tmp3};
        System.out.println("max is " + Util.findMax(array));
    }
}


依旧能够正确运行


三、拓展:数组排序(以冒泡排序为例)


1、int类型 原代码


//Tmp.java
 
public class Tmp{
    public static void bubbleSort(int[] array){
        for (int i = 0; i < array.length-1; i++) {
            boolean flag = false;
            for (int j = 0; j < array.length-1-i; j++) {
                if(array[j] > array[j+1]) {
                    int tmp = array[j];
                    array[j] = array[j+1];
                    array[j+1] = tmp;
                    flag = true;
                }
            }
            if(!flag) {
                break;
            }
        }
    }
}


//Test.java
 
import java.util.Arrays;
 
public class Test {
    public static void main(String[] args) {
        int[] array = {0,3,1,8,9,6,4,5,2};
        Tmp.bubbleSort(array);
        System.out.println(Arrays.toString(array));
    }
}



2、泛型类


//Util.java
 
public class Util<E extends Comparable<E>> {
    public void bubbleSort(E[] array){
        for (int i = 0; i < array.length-1; i++) {
            boolean flag = false;
            for (int j = 0; j < array.length-1-i; j++) {
                if(array[j].compareTo(array[j+1]) > 0) {
                    E tmp = array[j];
                    array[j] = array[j+1];
                    array[j+1] = tmp;
                    flag = true;
                }
            }
            if(!flag) {
                break;
            }
        }
    }
}


//Test.java
 
import java.util.Arrays;
 
public class Test {
    public static void main(String[] args) {
        Util<Integer> util = new Util<>();
        Integer[] array = {10,8,-33,7,21,78};
        util.bubbleSort(array);
        System.out.println(Arrays.toString(array));
    }
}



3、泛型方法


//Util.java
 
public class Util {
    public static <E extends Comparable<E>> void bubbleSort(E[] array){
        for (int i = 0; i < array.length-1; i++) {
            boolean flag = false;
            for (int j = 0; j < array.length-1-i; j++) {
                if(array[j].compareTo(array[j+1]) > 0) {
                    E tmp = array[j];
                    array[j] = array[j+1];
                    array[j+1] = tmp;
                    flag = true;
                }
            }
            if(!flag) {
                break;
            }
        }
    }
}
 


//Test.java
 
import java.util.Arrays;
 
public class Test {
    public static void main(String[] args) {
        Integer[] array = {10,8,-33,7,21,78};
        Util.bubbleSort(array);
        System.out.println(Arrays.toString(array));
    }
}



拓展阅读: 🔗Java初识泛型 | 如何通过泛型类/泛型方法获取任意类型的三个数的最大值?

相关文章
|
2天前
|
Arthas 存储 监控
性能监控之常见 Java Heap Dump 方法
【6月更文挑战8天】性能监控之常见 Java Heap Dump 方法
23 7
|
2天前
|
Java 开发者
Java 面向对象编程实战:从类定义到对象应用,让你成为高手!
【6月更文挑战第15天】在Java中,掌握面向对象编程至关重要。通过创建`Book`类,展示了属性如`title`和`author`,以及构造方法和getter方法。实例化对象如`book1`和`book2`,并访问其属性。进一步扩展类,添加`pages`和`calculateReadingTime`方法,显示了类的可扩展性。在更大规模的项目中,如电商系统,可以定义`Product`、`User`和`Order`类,利用对象表示实体和它们的交互。实践是精通Java OOP的关键,不断学习和应用以提升技能。
|
2天前
|
Java 开发者
为什么 Java 的类和对象如此重要?看完这篇你就懂了!
【6月更文挑战第15天】在Java中,类和对象是核心概念。类作为蓝图定义数据(如角色的名称和健康值)和行为(如`takeDamage`方法),而对象是类的实例,允许交互(如战士受伤)。通过继承,如`Circle`和`Rectangle`扩展`Shape`类,实现多态性,增强代码灵活性。类和对象促进代码组织、复用和可维护性,是高效软件开发的基础。
|
2天前
|
设计模式 Java
一文掌握 Java 面向对象精髓:从类定义到对象实战
【6月更文挑战第15天】Java面向对象编程初学者指南:类是对象模板,如`Person`类含`name`和`age`属性。创建对象用`new`,如`Person person = new Person()`。访问属性如`person.name=&quot;Alice&quot;`,调用方法如`person.sayHello()`。类能继承,如`Student extends Person`。对象间共享数据可传参或共用引用。多态性允许父类引用调用子类方法。注意对象生命周期和内存管理,避免内存泄漏。通过实践和理解这些基础,提升编程技能。
|
2天前
|
Java
深入 Java 面向对象:类的定义,竟然藏着这么多门道!
【6月更文挑战第15天】Java中的类定义是OOP的基础,它封装属性(如Student的name和age)和行为(如study())。简单的类仅触及表面,而复杂的类可模拟真实世界对象的多样性和交互。类还可通过继承扩展,如Student从Person派生,增加特有属性和行为。接口和抽象类等概念进一步增强了灵活性和可扩展性。类定义的深度和广度是构建高效、可维护代码的关键。
|
2天前
|
Java
别再被 Java 类和对象绕晕了!一篇文章让你秒懂!
【6月更文挑战第15天】Java中的类是对象的模板,定义属性(如姓名、年龄)和行为(如走路、说话)。对象是类的实例,有自己的属性值。例如,`Person`类可创建`Person`对象,赋予属性值并调用方法。同样,`Car`类可创建不同品牌的汽车对象,每个对象能加速或刹车。理解类与对象的关系是Java面向对象编程的基础。
|
2天前
|
Java
Java 小白也能看懂!类和对象详解,轻松入门面向对象编程
【6月更文挑战第15天】面向对象编程对新手可能抽象,但理解Java中的类和对象是关键。类是事物模板,如“汽车”类包含属性(颜色、型号、速度)和行为(启动、加速、刹车)。对象是类的实例,像具体的汽车。通过创建对象并调用其方法,可以模拟现实世界的情景。例如,`Car myCar = new Car();`创建了一个汽车对象,之后可设置属性和调用方法。多练习有助于掌握这一概念。
|
2天前
|
Java
Java 面向对象编程:你真的懂类和对象吗?
【6月更文挑战第15天】Java的面向对象编程聚焦于类与对象。类是共享属性和行为的抽象,如`Person`类含名字和年龄。对象是类的具体实例,如`person1`和`person2`各有独特的属性值。设计类时要考虑扩展性,以便适应变化,如添加“性别”属性。对象管理涉及保持其状态和行为的正确性。继承允许类如`Student`扩展`Person`,增加新特性。理解面向对象不仅是创建和使用,更是关于设计和架构的智慧。
|
2天前
|
Java
震惊!原来 Java 的类是这样定义的,你还在等什么?
【6月更文挑战第15天】Java 中的类是对象的蓝图,定义了其属性(如 `name`, `age`)和行为(构造器、方法)。例如,`Student` 类展示了如何通过构造器初始化属性,并通过方法(`getName`, `getAge`)访问这些属性。类的使用促进代码模块化、可维护性和扩展性,允许创建具有相同特征的多个对象,适应不断变化的需求。掌握类定义是提升Java编程能力的基础。
|
3天前
|
缓存 NoSQL Java
Java高并发实战:利用线程池和Redis实现高效数据入库
Java高并发实战:利用线程池和Redis实现高效数据入库
17 0