Java初识泛型 | 如何通过泛型类/泛型方法实现求数组元素最大值?

简介: 这是一个关于如何使用泛型在Java中找到数组中最大值的问题。

一、引言


给定一个整型数组,求数组中所有元素的最大值


该题同样是编程入门的基础题。关键在于拓展:能不能通过程序,实现给定的任意类型的数组,都能求出数组中所有元素的最大值?

这里我们先给出整型数组求最大值的代码,作为基础:


public class Util {
    public int findMaxInt(int[] array) {
        int max = array[0];
        for (int i = 0; i < array.length; i++) {
            if(max < array[i]) {
                max = array[i];
            }
        }
        return max;
    }
}


调用并运行:

public class Test {
    public static void main(String[] args) {
        int[] array = {1,0,9,4,5};
        System.out.println("max is " + util.findMaxInt(array));
    }
}



接下来我们来分析,如果通过泛型类或泛型方法使程序能够适用于任意一个数据类型。


二、编程分析

1、泛型类实现


解题之前,我们首先要了解泛型、泛型上界、泛型方法的概念。对于这些概念有所遗忘的同学,可以阅读文章:🔗Java初识泛型 | 如何通过泛型类/泛型方法获取任意类型的三个数的最大值?的知识解析部分熟悉一下。


这里,我们直接讲解思路,不再进行基础知识的铺垫。


思路


按照泛型的思路,我们试着将原来的类改成泛型类。用占位符E代替原代码中所有的int。但仅仅更改这些,最后会发现编译器在比较的位置报错了:



是什么原因导致编译失败呢?



原因:max和array[i]都是E类型也就是引用类型的变量,两个引用变量之间不能用大于小于号进行大小比较。可行的方法应当是调用比较对象的compareTo()方法。但是,compareTo()方法是不能直接调用的,它要求调用的对象的类型必须实现过Comparable接口。



如图 尝试直接调用compareTo()方法失败


换句话说,它对类型E有约束,这个约束就是: 必须实现过Comparable接口。因此,这里要用到类型的上界的知识,来进行约束。


public class Util<E extends Comparable<E>> {
    ...
}


<E extends Comparable<E>> 的含义为:传入的E类型必须是实现了Comparable接口的。如果传入的类型没有实现过Comparable接口,那么编译会报错。

此时,我们可以成功地调用compareTo()方法了:



此时调用成功


整合后,便能得出完整的代码了。


代码


泛型类:


public class Util<E extends Comparable<E>> {
    public E findMax(E[] array) {
        E max = array[0];
        for (int i = 0; i < array.length; i++) {
            if(max.compareTo(array[i]) < 0) {
                max = array[i];
            }
        }
        return max;
    }
}
 


调用:


Integer


1.public class Test {
    public static void main(String[] args) {
        Util<Integer> util = new Util<>();
        Integer[] array = {1,0,9,4,5};
        System.out.println("max is " + util.findMax(array));
    }
}



Double(只需更改main中的数据类型即可,Util类不用变动)


public class Test {
    public static void main(String[] args) {
        Util<Double> util = new Util<>();
        Double[] array = {13.6,100.5,0.0,-3.1,5.8};
        System.out.println("max is " + util.findMax(array));
    }
}



String 


public class Test {
    public static void main(String[] args) {
        Util<String> util = new Util<>();
        String[] array = {"China","America","Australia","Ireland"};
        System.out.println("max is " + util.findMax(array));
    }
}



自定义的类型Tmp,已手动实现了Comparable<Tmp>接口


//Tmp.java
 
public class Tmp implements Comparable<Tmp>{
    public int parameter1;
    public String parameter2;
 
    public Tmp(int parameter1, String parameter2) {
        this.parameter1 = parameter1;
        this.parameter2 = parameter2;
    }
 
    @Override
    public int compareTo(Tmp o) {
        //以parameter2为标准来比较Tmp
        //parameter2是String类,比较可以直接调用String类的compareTo方法
        return this.parameter2.compareTo(o.parameter2);
    }
 
    @Override
    public String toString() {
        return "Tmp{" +
                "parameter1=" + parameter1 +
                ", parameter2='" + parameter2 + '\'' +
                '}';
    }
}



//Test.java
 
public class Test {
    public static void main(String[] args) {
        Util<Tmp> util = new Util<>();
        Tmp tmp1 = new Tmp(10,"substantial");
        Tmp tmp2 = new Tmp(20,"circumspect");
        Tmp tmp3 = new Tmp(5,"coby");
        Tmp[] array = {tmp1,tmp2,tmp3};
        System.out.println("max is " + util.findMax(array));
    }
}



2、泛型方法实现


思路


如果用泛型类实现,则每次使用前还需要创建类对象。能不能把这一个步骤省去呢?答案是可以的,我们可以通过静态泛型方法来完成。


按照泛型方法的语法,我们对原代码稍作修改:


public class Util {
    public static  <E>  E findMax(E[] array) {
        ...
    }
}


此时的Util类已经不再是泛型类了,而是一个普通类。通过在修饰符后添加 static <E> 将普通方法改为了静态泛型方法。但此时还不够完善,同样的,我们需要把类型参数E实现了Comparable接口这一约束体现出来。只需要把<E>改为 <E extends Comparable<E>> 即可。


代码

public class Util {
    public static  <E extends Comparable<E>>  E findMax(E[] array) {
        E max = array[0];
        for (int i = 0; i < array.length; i++) {
            if(max.compareTo(array[i]) < 0) {
                max = array[i];
            }
        }
        return max;
    }
}


此时,测试时的代码也更加简略了:


public class Test {
    public static void main(String[] args) {
        Tmp tmp1 = new Tmp(10,"substantial");
        Tmp tmp2 = new Tmp(20,"circumspect");
        Tmp tmp3 = new Tmp(5,"coby");
        Tmp[] array = {tmp1,tmp2,tmp3};
        System.out.println("max is " + Util.findMax(array));
    }
}


依旧能够正确运行


三、拓展:数组排序(以冒泡排序为例)


1、int类型 原代码


//Tmp.java
 
public class Tmp{
    public static void bubbleSort(int[] array){
        for (int i = 0; i < array.length-1; i++) {
            boolean flag = false;
            for (int j = 0; j < array.length-1-i; j++) {
                if(array[j] > array[j+1]) {
                    int tmp = array[j];
                    array[j] = array[j+1];
                    array[j+1] = tmp;
                    flag = true;
                }
            }
            if(!flag) {
                break;
            }
        }
    }
}


//Test.java
 
import java.util.Arrays;
 
public class Test {
    public static void main(String[] args) {
        int[] array = {0,3,1,8,9,6,4,5,2};
        Tmp.bubbleSort(array);
        System.out.println(Arrays.toString(array));
    }
}



2、泛型类


//Util.java
 
public class Util<E extends Comparable<E>> {
    public void bubbleSort(E[] array){
        for (int i = 0; i < array.length-1; i++) {
            boolean flag = false;
            for (int j = 0; j < array.length-1-i; j++) {
                if(array[j].compareTo(array[j+1]) > 0) {
                    E tmp = array[j];
                    array[j] = array[j+1];
                    array[j+1] = tmp;
                    flag = true;
                }
            }
            if(!flag) {
                break;
            }
        }
    }
}


//Test.java
 
import java.util.Arrays;
 
public class Test {
    public static void main(String[] args) {
        Util<Integer> util = new Util<>();
        Integer[] array = {10,8,-33,7,21,78};
        util.bubbleSort(array);
        System.out.println(Arrays.toString(array));
    }
}



3、泛型方法


//Util.java
 
public class Util {
    public static <E extends Comparable<E>> void bubbleSort(E[] array){
        for (int i = 0; i < array.length-1; i++) {
            boolean flag = false;
            for (int j = 0; j < array.length-1-i; j++) {
                if(array[j].compareTo(array[j+1]) > 0) {
                    E tmp = array[j];
                    array[j] = array[j+1];
                    array[j+1] = tmp;
                    flag = true;
                }
            }
            if(!flag) {
                break;
            }
        }
    }
}
 


//Test.java
 
import java.util.Arrays;
 
public class Test {
    public static void main(String[] args) {
        Integer[] array = {10,8,-33,7,21,78};
        Util.bubbleSort(array);
        System.out.println(Arrays.toString(array));
    }
}



拓展阅读: 🔗Java初识泛型 | 如何通过泛型类/泛型方法获取任意类型的三个数的最大值?

相关文章
|
15天前
|
存储 Java 程序员
Java基础的灵魂——Object类方法详解(社招面试不踩坑)
本文介绍了Java中`Object`类的几个重要方法,包括`toString`、`equals`、`hashCode`、`finalize`、`clone`、`getClass`、`notify`和`wait`。这些方法是面试中的常考点,掌握它们有助于理解Java对象的行为和实现多线程编程。作者通过具体示例和应用场景,详细解析了每个方法的作用和重写技巧,帮助读者更好地应对面试和技术开发。
55 4
|
25天前
|
Java API
Java 对象释放与 finalize 方法
关于 Java 对象释放的疑惑解答,以及 finalize 方法的相关知识。
45 17
|
19天前
|
Java 测试技术 Maven
Java一分钟之-PowerMock:静态方法与私有方法测试
通过本文的详细介绍,您可以使用PowerMock轻松地测试Java代码中的静态方法和私有方法。PowerMock通过扩展Mockito,提供了强大的功能,帮助开发者在复杂的测试场景中保持高效和准确的单元测试。希望本文对您的Java单元测试有所帮助。
44 2
|
27天前
|
Java 开发者
在Java多线程编程中,选择合适的线程创建方法至关重要
【10月更文挑战第20天】在Java多线程编程中,选择合适的线程创建方法至关重要。本文通过案例分析,探讨了继承Thread类和实现Runnable接口两种方法的优缺点及适用场景,帮助开发者做出明智的选择。
17 2
|
26天前
|
Java API
[Java]泛型
本文详细介绍了Java泛型的相关概念和使用方法,包括类型判断、继承泛型类或实现泛型接口、泛型通配符、泛型方法、泛型上下边界、静态方法中使用泛型等内容。作者通过多个示例和测试代码,深入浅出地解释了泛型的原理和应用场景,帮助读者更好地理解和掌握Java泛型的使用技巧。文章还探讨了一些常见的疑惑和误区,如泛型擦除和基本数据类型数组的使用限制。最后,作者强调了泛型在实际开发中的重要性和应用价值。
22 0
[Java]泛型
|
21天前
|
Java Spring
JAVA获取重定向地址URL的两种方法
【10月更文挑战第17天】本文介绍了两种在Java中获取HTTP响应头中的Location字段的方法:一种是使用HttpURLConnection,另一种是使用Spring的RestTemplate。通过设置连接超时和禁用自动重定向,确保请求按预期执行。此外,还提供了一个自定义的`NoRedirectSimpleClientHttpRequestFactory`类,用于禁用RestTemplate的自动重定向功能。
|
5天前
|
Java 开发者
Java多线程编程中的常见误区与最佳实践####
本文深入剖析了Java多线程编程中开发者常遇到的几个典型误区,如对`start()`与`run()`方法的混淆使用、忽视线程安全问题、错误处理未同步的共享变量等,并针对这些问题提出了具体的解决方案和最佳实践。通过实例代码对比,直观展示了正确与错误的实现方式,旨在帮助读者构建更加健壮、高效的多线程应用程序。 ####
|
13天前
|
安全 Java 测试技术
Java并行流陷阱:为什么指定线程池可能是个坏主意
本文探讨了Java并行流的使用陷阱,尤其是指定线程池的问题。文章分析了并行流的设计思想,指出了指定线程池的弊端,并提供了使用CompletableFuture等替代方案。同时,介绍了Parallel Collector库在处理阻塞任务时的优势和特点。
|
4天前
|
安全 Java 开发者
Java 多线程并发控制:深入理解与实战应用
《Java多线程并发控制:深入理解与实战应用》一书详细解析了Java多线程编程的核心概念、并发控制技术及其实战技巧,适合Java开发者深入学习和实践参考。
|
4天前
|
Java 开发者
Java多线程编程的艺术与实践####
本文深入探讨了Java多线程编程的核心概念、应用场景及实践技巧。不同于传统的技术文档,本文以实战为导向,通过生动的实例和详尽的代码解析,引领读者领略多线程编程的魅力,掌握其在提升应用性能、优化资源利用方面的关键作用。无论你是Java初学者还是有一定经验的开发者,本文都将为你打开多线程编程的新视角。 ####
下一篇
无影云桌面