实时计算 Flink版产品使用合集之idea本地调试,在哪里查看执行结果

本文涉及的产品
实时计算 Flink 版,1000CU*H 3个月
简介: 实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStreamAPI、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。

问题一:Flink CDC对于一个大事务更新,采集延迟大,增加tm内存有作用吗,怎么样能减小延迟?

Flink CDC对于一个大事务更新,采集延迟大,增加tm内存有作用吗,怎么样能减小延迟?



参考答案:

Flink CDC在处理大事务更新时,如果采集延迟较大,增加TM(Task Manager)的内存可能会有一定的帮助,特别是当大事务中的数据量过大导致内部缓冲区不足或者频繁触发checkpoint时。

1. 增大内存:

增加TM的内存可以提供更大的缓冲空间,使得在处理大事务时能够存储更多的变更记录,从而减少因为内存不足而导致的数据溢出到磁盘,进而降低I/O开销和延迟。

2. 调整并行度:

合理地设置source connector的并行度也很重要。过高的并行度可能会导致每个子任务处理的数据量变小,但如果通信开销大于额外并行带来的好处,则可能导致整体性能下降。适当增加并行度可以提高处理速度,但需要权衡资源分配。

3. 配置优化:

对于Debezium等CDC工具,可以考虑调整相关参数以适应大事务场景。例如,增大debezium.max.batch.size限制单次批次传输的最大事件数,或者调整debezium.snapshot.isolation.mode来控制快照隔离级别,确保大事务期间的读一致性。

4. 网络与IO优化:

确保网络带宽充足,避免因网络瓶颈造成的数据传输延迟。同时,监控和优化目标系统的写入速度,如使用批量写入、压缩等技术减少写入延迟。

5. Checkpoint策略:

根据实际情况调整checkpoint间隔和超时时间,以便更快速地完成checkpoint,同时也允许更大的数据窗口进行无阻塞处理。

6. 背压管理:

有效管理背压,确保上下游作业之间的数据流动平衡,防止数据积压导致延迟。

7. 源数据库优化:

如果可能的话,从源头上优化大事务操作,比如通过分批提交或降低单个事务的大小,减轻对CDC采集的压力。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/584475



问题二:oracle19c flink cdc的那个不能用你们是怎么解决的呢?

oracle19c flink cdc的那个不能用你们是怎么解决的呢?



参考答案:

重新编译源码



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/584473



问题三:link-connector-和flink-sql-connector有什么区别?

flink-connector-mysql-cdc和flink-sql-connector-mysql-cdc有什么区别?为什么我用flink-sql-connector-mysql-cdc可以正常使用,而用flink-connector-mysql-cdc就报错java.lang.NoClassDefFoundError: org/apache/fli



参考答案:

sql包里面有table相关依赖,可以去看flink动态表相关知识,然后wiki也有解答



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/584472



问题四:Flink CDC这个执行的结果在什么地方看?

Flink CDC这个执行的结果在什么地方看?



参考答案:

tm的std -out,如果是idea本地调试,会控制台输出



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/584468



问题五:flink cdc 3.0 和适配版本是最新的1.18吗?

flink cdc 3.0 和适配版本是最新的1.18吗?



参考答案:

Flink CDC是支持Apache Flink 1.18版本的。Apache Flink 1.18.0版本已经在2021年10月底正式发布,这个版本在流处理场景下做了很多优化,并且增加了许多新的特性和功能。Flink CDC作为一个开源的数据集成框架,具有全增量一体化、无锁读取、并发读取、表结构变更自动同步、分布式架构等技术优势,因此在开源社区中非常受欢迎。值得一提的是,Flink CDC的2.2版本也在近期发布,这个版本共有34位社区贡献者参与贡献,累计贡献了110+ commits。这些更新和改进都极大地丰富了Flink CDC的功能和性能,使其能够更好地满足用户的需求。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/584457

相关实践学习
基于Hologres+Flink搭建GitHub实时数据大屏
通过使用Flink、Hologres构建实时数仓,并通过Hologres对接BI分析工具(以DataV为例),实现海量数据实时分析.
实时计算 Flink 实战课程
如何使用实时计算 Flink 搞定数据处理难题?实时计算 Flink 极客训练营产品、技术专家齐上阵,从开源 Flink功能介绍到实时计算 Flink 优势详解,现场实操,5天即可上手! 欢迎开通实时计算 Flink 版: https://cn.aliyun.com/product/bigdata/sc Flink Forward Asia 介绍: Flink Forward 是由 Apache 官方授权,Apache Flink Community China 支持的会议,通过参会不仅可以了解到 Flink 社区的最新动态和发展计划,还可以了解到国内外一线大厂围绕 Flink 生态的生产实践经验,是 Flink 开发者和使用者不可错过的盛会。 去年经过品牌升级后的 Flink Forward Asia 吸引了超过2000人线下参与,一举成为国内最大的 Apache 顶级项目会议。结合2020年的特殊情况,Flink Forward Asia 2020 将在12月26日以线上峰会的形式与大家见面。
相关文章
|
3月前
|
存储 分布式计算 数据处理
「48小时极速反馈」阿里云实时计算Flink广招天下英雄
阿里云实时计算Flink团队,全球领先的流计算引擎缔造者,支撑双11万亿级数据处理,推动Apache Flink技术发展。现招募Flink执行引擎、存储引擎、数据通道、平台管控及产品经理人才,地点覆盖北京、杭州、上海。技术深度参与开源核心,打造企业级实时计算解决方案,助力全球企业实现毫秒洞察。
481 0
「48小时极速反馈」阿里云实时计算Flink广招天下英雄
|
6月前
|
监控 测试技术 开发者
IDEA项目调试你都会用了么,快看看是否有你不知道的调试技巧
在IntelliJ IDEA中,熟练运用调试工具可显著提升开发效率。通过设置断点、单步执行、变量监控等功能,快速定位问题并优化代码性能。此外,掌握多线程调试、异常处理及远程调试技巧也至关重要。为提高效率,建议合理使用条件断点、快捷键与日志监控,同时不断学习总结经验。若觉得有用,别忘了点赞收藏!
IDEA项目调试你都会用了么,快看看是否有你不知道的调试技巧
|
8月前
|
IDE 程序员 开发工具
只用正版!教你5个方法,白嫖JetBrains家族的所有产品,包含:IntelliJ IDEA、PyCharm、WebStorm、CLion、Rider
程序员晚枫分享了5种官方认证的免费使用JetBrains家族产品的方法,包括内容创作者计划、开源项目支持、教育许可证、用户组支持和开发者认可计划。这些方法帮助个人开发者与小型团队合法获取强大开发工具,如IntelliJ IDEA、PyCharm等,降低开发成本,提升效率。同时提醒大家遵守使用规范,尊重知识产权。
1515 13
zdl
|
消息中间件 运维 大数据
大数据实时计算产品的对比测评:实时计算Flink版 VS 自建Flink集群
本文介绍了实时计算Flink版与自建Flink集群的对比,涵盖部署成本、性能表现、易用性和企业级能力等方面。实时计算Flink版作为全托管服务,显著降低了运维成本,提供了强大的集成能力和弹性扩展,特别适合中小型团队和业务波动大的场景。文中还提出了改进建议,并探讨了与其他产品的联动可能性。总结指出,实时计算Flink版在简化运维、降低成本和提升易用性方面表现出色,是大数据实时计算的优选方案。
zdl
532 56
|
9月前
|
人工智能 IDE 程序员
从 AI Coding 演进路径看通义灵码 AI 程序员的发布,让更多 idea 变成产品
从 AI Coding 演进路径看通义灵码 AI 程序员的发布,让更多 idea 变成产品
|
10月前
|
人工智能 IDE 程序员
从 AI Coding 演进路径看通义灵码 AI 程序员的发布,让更多 idea 变成产品
通义灵码 2.0 不仅正式发布 AI 程序员,还升级了很多基础能力,使用场景多样。繁星计划的推出更为大学生提供了免费的智能编码助手,助力科技创新。让不具备编码能力的人也可以将 idea 变成产品,帮助到更多开发者和泛开发者。
|
10月前
|
消息中间件 关系型数据库 MySQL
Flink CDC 在阿里云实时计算Flink版的云上实践
本文整理自阿里云高级开发工程师阮航在Flink Forward Asia 2024的分享,重点介绍了Flink CDC与实时计算Flink的集成、CDC YAML的核心功能及应用场景。主要内容包括:Flink CDC的发展及其在流批数据处理中的作用;CDC YAML支持的同步链路、Transform和Route功能、丰富的监控指标;典型应用场景如整库同步、Binlog原始数据同步、分库分表同步等;并通过两个Demo展示了MySQL整库同步到Paimon和Binlog同步到Kafka的过程。最后,介绍了未来规划,如脏数据处理、数据限流及扩展数据源支持。
667 0
Flink CDC 在阿里云实时计算Flink版的云上实践
|
11月前
|
存储 关系型数据库 BI
实时计算UniFlow:Flink+Paimon构建流批一体实时湖仓
实时计算架构中,传统湖仓架构在数据流量管控和应用场景支持上表现良好,但在实际运营中常忽略细节,导致新问题。为解决这些问题,提出了流批一体的实时计算湖仓架构——UniFlow。该架构通过统一的流批计算引擎、存储格式(如Paimon)和Flink CDC工具,简化开发流程,降低成本,并确保数据一致性和实时性。UniFlow还引入了Flink Materialized Table,实现了声明式ETL,优化了调度和执行模式,使用户能灵活调整新鲜度与成本。最终,UniFlow不仅提高了开发和运维效率,还提供了更实时的数据支持,满足业务决策需求。
|
SQL 运维 数据可视化
阿里云实时计算Flink版产品体验测评
阿里云实时计算Flink基于Apache Flink构建,提供一站式实时大数据分析平台,支持端到端亚秒级实时数据分析,适用于实时大屏、实时报表、实时ETL和风控监测等场景,具备高性价比、开发效率、运维管理和企业安全等优势。

相关产品

  • 实时计算 Flink版