实时计算 Flink版产品使用合集之使用 left interval join 和 timestamp assigner 进行灰度切换,并发现在灰度完成后水印停滞不前如何解决

本文涉及的产品
实时计算 Flink 版,1000CU*H 3个月
简介: 实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。

问题一:请问一下Flink,我进行双流join之后,为什么右表的数据没有了啊?


请问一下Flink,我进行双流join之后,为什么右表的数据没有了啊? 正常应该是有数据能匹配上的,是我有什么配置没有配吗?在sql里这个配置能更改吗?


参考回答:

超过了这个时间没数据更新,右边就会匹配不到,state有默认存储时间的.这个是不好的,state时间越长,状态越大,推荐维表join,双流join推荐的是双方数据在默认的ttl内都有更新过来,如果你的维表数据不大,flink 1.18 SQL中可以对不同流的的ttl设置存储时间.你的flink如果不是1.18 ,推荐用维表join,维表join是根据a表的时间去实时去数据库拿取,当然你也可以设置缓存


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/571644


问题二:Flink 为什么这里映射的端口不是6123?


Flink kubernetes.hostnetwork.enabled=true为什么这里映射的端口不是6123

然后造成taskmanager和jobmanager通信超时 任务自动cancel 有大佬了解吗?

正常应该会被识别到port才对


参考回答:

在Flink中,6123是默认的RPC端口,用于集群间的通信。然而,在某些情况下,用户可能会选择更改这个端口,例如为了避免与其他服务的端口冲突。

此外,还有一些其他的端口可能在Flink集群中使用,包括但不限于:

  • JobManager Web UI端口:默认为8081,用于展示Flink集群的状态和任务信息。
  • TaskManager DataPort端口:默认为6121,用于TaskManager接收和发送数据流。
  • ZooKeeper端口:默认为2181,用于协调Flink集群的状态和配置。

因此,在使用Flink时,需要关注各个组件使用的端口,并确保它们不会发生冲突。如果遇到端口冲突的问题,可以尝试通过修改Flink的配置文件来更改端口设置。


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/571643


问题三:flink在standalone模式下任务失败任务太多次,这个问题有解决方案么?


flink在standalone模式下任务失败任务太多次,会导致jobmanager的jvm heap内存不断增加,这个问题有解决方案么?


参考回答:

Flink在Standalone模式下,如果任务失败次数过多,确实有可能导致JobManager的JVM堆内存不断增加。这种情况可能是由于某些TaskManager上的Task数增多,导致这些TaskManager的负载加重,从而影响了JobManager的内存管理。

为了解决这个问题,您可以考虑以下建议:

  1. 调整TaskManager的内存分配:根据任务的实际需求,可以适当增加或减少TaskManager的内存分配,确保其能够正常运行并处理任务。
  2. 调整JobManager的内存分配:同样,您也可以调整JobManager的内存分配,以确保它能够有效地管理和调度任务。
  3. 监控和诊断:定期检查Flink集群的运行状态和日志,特别是在出现异常情况时。使用工具如jstat来获取GC的信息,这可以帮助您发现和解决元空间占用飙升、频繁GC等问题。
  4. 优化任务逻辑:检查并优化您的Flink任务逻辑,确保它们不会因为某些错误或异常情况而频繁失败。
  5. 使用Systemd管理Flink:考虑使用Linux自带的Systemd方式管理JobManager和TaskManager的启停,这样在它们出现故障时,可以及时将它们拉起来。

总之,要解决Flink在Standalone模式下因任务失败导致的内存问题,需要从多个方面进行考虑和调整,确保集群的稳定性和高效运行。


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/571642


问题四:github上的flink没有issue吗?


github上的flink没有issue吗?


参考回答:

https://issues.apache.org/jira/projects/FLINK/issues/


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/571640


问题五:请问下有个Flink场景,我有两个不同数据类型的topic:a,b,这个有人遇到过吗?


请问下有个Flink场景,我有两个不同数据类型的topic:a,b,他们分别又有相同数据类型的后缀为_grey的灰度用的topic: a_grey,b_grey

a_grey和b_grey分别是用来对应a,b进行灰度切换的,灰度流程是先灰度部分数据,后面全量切换,a -> a_grey, b -> b_grey,下一次灰度就是b_grey -> b, a_grey -> a。

我会用datastream api,去拉取a,a_grey进行union,withTimestampAssigner,使用事件时间戳

用datastream api,去拉取b,b_grey进行unionr,使用事件时间戳

然后去将union之后的stream转换为table,a_union_table和b_union_table 然后用flink sql进行left interval join,a_union_table left interval join b_union_table,获取数据再转为stream,用stream api进行mapper操作,最后写入数据库。

a,a_grey,b,b_grey都有8个分区,

a和a_grey会发送到所有的8个分区有数据

但是b,b_grey,只会发送到里面四个分区,其他四个分区没有数据

现在的问题是每次灰度全量切换完成之后,flink的水印就会推进不了,停留在切换的kafka数据时间戳附近,推进不了,请问下,这个有人遇到过吗?是什么原因,可以怎么解决?flink 1.17.1和1.14.5都不行

我尝试过withIdleness,或者不用withTimestampAssigner,但是在下次切换的时候又出这种问题了


参考回答:

将b的source算子并行度设置为1,再通过map算子扩展为8个分区,再进行后面的watermark设置,开窗,jion操作。

这要找到withidleness失效的原因,理论上不会出现这种问题,只要你给4个source都设置了withidleness,那要么一直有问题,要么一直没问题,不会说灰度一下就有问题了。

解决的思路是,你不是有的并行度没数据吗,那我就在source这设置1个并行度,然后再分给多个并行度(随便怎么分,总之要保证eventtime均匀),这样这多个并行度的算子中就不会出现某一个没数据了。这个思路还是不如withidleness的方法好,eventtime均匀不是一个永远成立的条件。

不要在datasource那添加watermark,在后面重开一个map算子,再添加watermark试试


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/571639

相关实践学习
基于Hologres+Flink搭建GitHub实时数据大屏
通过使用Flink、Hologres构建实时数仓,并通过Hologres对接BI分析工具(以DataV为例),实现海量数据实时分析.
实时计算 Flink 实战课程
如何使用实时计算 Flink 搞定数据处理难题?实时计算 Flink 极客训练营产品、技术专家齐上阵,从开源 Flink功能介绍到实时计算 Flink 优势详解,现场实操,5天即可上手! 欢迎开通实时计算 Flink 版: https://cn.aliyun.com/product/bigdata/sc Flink Forward Asia 介绍: Flink Forward 是由 Apache 官方授权,Apache Flink Community China 支持的会议,通过参会不仅可以了解到 Flink 社区的最新动态和发展计划,还可以了解到国内外一线大厂围绕 Flink 生态的生产实践经验,是 Flink 开发者和使用者不可错过的盛会。 去年经过品牌升级后的 Flink Forward Asia 吸引了超过2000人线下参与,一举成为国内最大的 Apache 顶级项目会议。结合2020年的特殊情况,Flink Forward Asia 2020 将在12月26日以线上峰会的形式与大家见面。
相关文章
|
10月前
|
存储 分布式计算 流计算
实时计算 Flash – 兼容 Flink 的新一代向量化流计算引擎
本文介绍了阿里云开源大数据团队在实时计算领域的最新成果——向量化流计算引擎Flash。文章主要内容包括:Apache Flink 成为业界流计算标准、Flash 核心技术解读、性能测试数据以及在阿里巴巴集团的落地效果。Flash 是一款完全兼容 Apache Flink 的新一代流计算引擎,通过向量化技术和 C++ 实现,大幅提升了性能和成本效益。
3176 73
实时计算 Flash – 兼容 Flink 的新一代向量化流计算引擎
zdl
|
10月前
|
消息中间件 运维 大数据
大数据实时计算产品的对比测评:实时计算Flink版 VS 自建Flink集群
本文介绍了实时计算Flink版与自建Flink集群的对比,涵盖部署成本、性能表现、易用性和企业级能力等方面。实时计算Flink版作为全托管服务,显著降低了运维成本,提供了强大的集成能力和弹性扩展,特别适合中小型团队和业务波动大的场景。文中还提出了改进建议,并探讨了与其他产品的联动可能性。总结指出,实时计算Flink版在简化运维、降低成本和提升易用性方面表现出色,是大数据实时计算的优选方案。
zdl
414 56
|
8月前
|
消息中间件 关系型数据库 MySQL
Flink CDC 在阿里云实时计算Flink版的云上实践
本文整理自阿里云高级开发工程师阮航在Flink Forward Asia 2024的分享,重点介绍了Flink CDC与实时计算Flink的集成、CDC YAML的核心功能及应用场景。主要内容包括:Flink CDC的发展及其在流批数据处理中的作用;CDC YAML支持的同步链路、Transform和Route功能、丰富的监控指标;典型应用场景如整库同步、Binlog原始数据同步、分库分表同步等;并通过两个Demo展示了MySQL整库同步到Paimon和Binlog同步到Kafka的过程。最后,介绍了未来规划,如脏数据处理、数据限流及扩展数据源支持。
531 0
Flink CDC 在阿里云实时计算Flink版的云上实践
|
9月前
|
存储 关系型数据库 BI
实时计算UniFlow:Flink+Paimon构建流批一体实时湖仓
实时计算架构中,传统湖仓架构在数据流量管控和应用场景支持上表现良好,但在实际运营中常忽略细节,导致新问题。为解决这些问题,提出了流批一体的实时计算湖仓架构——UniFlow。该架构通过统一的流批计算引擎、存储格式(如Paimon)和Flink CDC工具,简化开发流程,降低成本,并确保数据一致性和实时性。UniFlow还引入了Flink Materialized Table,实现了声明式ETL,优化了调度和执行模式,使用户能灵活调整新鲜度与成本。最终,UniFlow不仅提高了开发和运维效率,还提供了更实时的数据支持,满足业务决策需求。
|
10月前
|
SQL 运维 数据可视化
阿里云实时计算Flink版产品体验测评
阿里云实时计算Flink基于Apache Flink构建,提供一站式实时大数据分析平台,支持端到端亚秒级实时数据分析,适用于实时大屏、实时报表、实时ETL和风控监测等场景,具备高性价比、开发效率、运维管理和企业安全等优势。
|
11月前
|
运维 搜索推荐 数据安全/隐私保护
阿里云实时计算Flink版测评报告
阿里云实时计算Flink版在用户行为分析与标签画像场景中表现出色,通过实时处理电商平台用户行为数据,生成用户兴趣偏好和标签,提升推荐系统效率。该服务具备高稳定性、低延迟、高吞吐量,支持按需计费,显著降低运维成本,提高开发效率。
229 1
|
11月前
|
运维 数据处理 Apache
数据实时计算产品对比测评报告:阿里云实时计算Flink版
数据实时计算产品对比测评报告:阿里云实时计算Flink版
|
11月前
|
运维 监控 Serverless
阿里云实时计算Flink版评测报告
阿里云实时计算Flink版是一款全托管的Serverless实时流处理服务,基于Apache Flink构建,提供企业级增值功能。本文从稳定性、性能、开发运维、安全性和成本效益等方面全面评测该产品,展示其在实时数据处理中的卓越表现和高投资回报率。
|
11月前
|
存储 运维 监控
实时计算Flink版在稳定性、性能、开发运维、安全能力等等跟其他引擎及自建Flink集群比较。
实时计算Flink版在稳定性、性能、开发运维和安全能力等方面表现出色。其自研的高性能状态存储引擎GeminiStateBackend显著提升了作业稳定性,状态管理优化使性能提升40%以上。核心性能较开源Flink提升2-3倍,资源利用率提高100%。提供一站式开发管理、自动化运维和丰富的监控告警功能,支持多语言开发和智能调优。安全方面,具备访问控制、高可用保障和全链路容错能力,确保企业级应用的安全与稳定。
199 0

相关产品

  • 实时计算 Flink版