ICLR 2024 Spotlight:无惧中间步骤,MUSTARD可生成高质量数学推理数据

简介: 【5月更文挑战第14天】

在ICLR 2024会议上,一项名为MUSTARD(数学推理的多步联合训练和数据增强)的研究引起了广泛关注。这项研究旨在解决数学推理任务中的两个挑战:数据质量和模型泛化能力。

首先,数学推理任务通常需要处理复杂的中间步骤,如代数表达式的简化、方程的求解等。然而,现有的数学推理数据集往往缺乏对这些中间步骤的详细标注,导致模型难以学习到正确的推理过程。为了解决这个问题,MUSTARD提出了一种多步联合训练的方法,通过将问题分解为多个子问题,并要求模型在每个子问题上进行推理,从而学习到更丰富的推理过程。

其次,数学推理任务的泛化能力也是一个挑战。现有的数学推理模型往往只能处理特定领域的数学问题,无法泛化到其他领域。为了解决这个问题,MUSTARD提出了一种数据增强的方法,通过将数学问题进行变形和扩展,生成更多的训练样本,从而提高模型的泛化能力。

在实验中,研究人员将MUSTARD与现有的数学推理模型进行了比较。结果表明,MUSTARD能够生成更高质量的数学推理数据,并显著提高模型的泛化能力。此外,MUSTARD还具有可解释性强、可扩展性强等优点。

然而,MUSTARD也存在一些局限性。首先,多步联合训练的方法可能需要更多的计算资源和时间。其次,数据增强的方法可能需要更多的领域知识和专家参与。

论文链接:https://openreview.net/forum?id=8xliOUg9EW

目录
相关文章
|
6月前
|
机器学习/深度学习 编解码 算法
英文论文(sci)解读复现:基于YOLOv5的自然场景下苹果叶片病害实时检测
英文论文(sci)解读复现:基于YOLOv5的自然场景下苹果叶片病害实时检测
264 0
|
6月前
|
机器学习/深度学习 人工智能 算法
从300亿分子中筛出6款,结构新且易合成,斯坦福抗生素设计AI模型登Nature子刊
【4月更文挑战第12天】斯坦福大学研究团队在Nature子刊发表论文,展示人工智能如何从300亿个分子中筛选出6种新型抗生素候选分子,为抗药性问题提供新解决方案。利用深度学习算法,AI模型考虑化学结构及合成可行性,发现独特化合物,加速药物研发。然而,成功应用还需临床试验验证及克服安全性和耐药性挑战。AI技术在药物设计中的角色引起关注,强调平衡使用与基础科学研究的重要性。
55 1
从300亿分子中筛出6款,结构新且易合成,斯坦福抗生素设计AI模型登Nature子刊
|
3月前
|
机器学习/深度学习 监控 定位技术
神经网络也有空间意识!学会在Minecraft创建地图,登上Nature子刊
【8月更文挑战第14天】国际团队利用预测编码神经网络,在Minecraft中实现了空间认知突破。他们在《自然》子刊发表的研究显示,神经网络能学习游戏内的空间关系并构建地图,不仅标记地形与物体,还能理解其间的相对位置。此成果揭示了神经网络在空间认知方面的潜力,引发了关于其真实空间意识及可能应用的讨论。论文链接:https://www.nature.com/articles/s42256-024-00863-1。
136 66
|
3月前
|
人工智能 安全 机器人
LLM对齐数据全自动合成!UW华人博士生提出Magpie方法,Macbook Air即可运行
【8月更文挑战第11天】在AI领域,大型语言模型(LLM)的行为对齐一直是个挑战。华盛顿大学研究人员提出名为Magpie的新方法,能自动高效生成高质量指令数据,减少人工干预,提升LLM的对齐效果。通过输入模板,Magpie利用已对齐LLM生成能力自动生成指令数据,仅需少量GPU资源即可创建大规模数据集。实验显示,使用Magpie数据集微调的模型性能媲美传统监督方法。尽管如此,Magpie仍需进一步优化以生成特定领域指令并确保数据安全性。[论文](https://arxiv.org/abs/2406.08464)
160 60
|
5月前
|
机器学习/深度学习 定位技术
ICLR 2024 Spotlight:连续数值分布式表征加持,浙大UIUC让语言模型擅长表格预测
【6月更文挑战第23天】在ICLR 2024会议上,浙大和UIUC的研究团队推出TP-BERTa,一种改进的BERT模型,专为表格预测。通过将连续数值特征转为文本并利用自注意力机制,TP-BERTa能有效处理高维、异构表格数据,提高预测性能。预训练和微调策略使其在XGBoost等传统方法及FT-Transformer等深度学习模型中脱颖而出。论文链接:[anzIzGZuLi](https://openreview.net/pdf?id=anzIzGZuLi)
104 5
|
机器学习/深度学习 运维 算法
ICLR Spotlight! 清华提出时序异常检测算法,连刷5个SOTA
ICLR Spotlight! 清华提出时序异常检测算法,连刷5个SOTA
529 0
ICLR Spotlight! 清华提出时序异常检测算法,连刷5个SOTA
|
机器学习/深度学习 监控 自动驾驶
差点被ECCV错过的Oral论文:视频理解新框架,仅用微调的「成本」,达到预训练的「全能」
差点被ECCV错过的Oral论文:视频理解新框架,仅用微调的「成本」,达到预训练的「全能」
148 0
|
机器学习/深度学习 人工智能 运维
ECCV 2022 Oral | 无需微调即可推广,上交大、上海人工智能实验室等提出基于配准的少样本异常检测框架
ECCV 2022 Oral | 无需微调即可推广,上交大、上海人工智能实验室等提出基于配准的少样本异常检测框架
139 0
|
自然语言处理 区块链
长文本生成更流畅,斯坦福研究者引入时间控制方法,论文入选ICLR 2022
长文本生成更流畅,斯坦福研究者引入时间控制方法,论文入选ICLR 2022
|
机器学习/深度学习 算法 数据挖掘
图神经网络发Nature子刊,却被爆比普通算法慢104倍,质疑者:灌水新高度?
图神经网络发Nature子刊,却被爆比普通算法慢104倍,质疑者:灌水新高度?