量子计算与量子密码(入门级-少图版)(1)

简介: 量子计算与量子密码(入门级-少图版)(1)

写在最前面

写这篇博客,记录这段不一样的学习经历(6W+字预警*)

少图版:原文由于图片上床图床导致链接过多,因此质量分只有60

原文:https://blog.csdn.net/wtyuong/article/details/133973128

路松峰老师的课程《量子计算与量子密码》

纯英文PPT,上课的时候一边有道查单词,一边写笔记。不管听没听懂,单词量提高了不少hh

老师课上板书也是仔细清晰,还给我们发了打印和手写的标答,帮助更好地理解和掌握知识

后面复习的时候去图书馆借阅了相关的书籍,发现老师还是手下留情了。平时的作业和测验主要是帮助理解概念,没有刻意考察(难为)我们

开卷考试,考试过程中又理解了一些概念,启发式考题设计的好妙(虽然不太会

能跟随这样一位优秀的老师 学习量子密码这种望而生畏的课程 真的很幸运

很有意思的一门课,感觉即使之后不从事与量子计算和量子密码直接相关的工作,学习这些仍然提供广泛的知识和认知收益,帮助更好地理解未来科技发展趋势,加深对信息安全和计算原理的理解,激发(劝退)对新兴科技和跨学科研究的兴趣。

感兴趣的同学可以看B站教程:https://www.bilibili.com/video/BV1Mx4y1L7bM/

一些可能带来的有趣的知识和潜在的收获

如果之后不尝试相关研究,下面是一些可能带来的有趣的知识和潜在的收获:

  1. 理解量子计算原理:将学习到量子计算的基本原理,包括量子比特、叠加、纠缠等概念。这将增加对未来计算领域的理解。
  2. 学习量子算法:了解一些重要的量子算法,如Shor算法(用于因数分解)和Grover算法(用于搜索问题),这些算法在某些情况下能够比传统计算更快地解决问题。
  3. 理解安全通信原理:学习如何利用量子物理学原理来确保安全通信。有助于理解密码学和网络安全的基本原理。
  4. 了解量子密钥分发:探索量子密钥分发协议,它们可以提供更高级别的安全性,防止未经授权的访问和数据泄漏。
  1. 未来网络安全:了解量子密码对未来网络安全的潜在影响,特别是在面对量子计算破解传统加密方法的挑战时。
  2. 跨学科知识和应用潜力:量子密码融合了物理学、计算机科学和数学等多个领域的知识,这有助于培养跨学科思维能力。了解量子计算的潜在应用领域,如材料科学、化学、金融和人工智能等。更好地了解未来可能出现的新兴行业和职业机会。

参考:https://learn.microsoft.com/zh-cn/azure/quantum/concepts-multiple-qubits

注:前六章考前复习,后面几章主要围绕考点展开复盘

1、Introduction导言

四个特性

量子力学的革命性性质是什么

What are the revolutionary properties ofquantum Mechanics

不确定性(自由意志论)Indeterminism

经典力学和量子力学之间最基本的区别是,经典力学是一个确定性的理论:

给定一个系统当前状态的完美知识,它在过去和未来的所有时间的状态,原则上是可计算的。

The most fundamental distinction between classical and quantum mechanics is that classical mechanics is a deterministic theory:

given perfect knowledge of the current state of a system, its state at all past and futuretimes is, in principle, calcuiable.

在经典力学中,概率只用于描述一个人的知识不完整的情况。

相比之下,量子力学只对概率做出声明。

In classical mechanics,probabilities are used only to describe situations whereone’s knowledge is incomplete.

By contrast,quantum mechanics makes statements only about probabilities.

如果对几个完全相同的系统进行相同的测量,一般情况下,人们不能期望得到相同的结果。

If the same measurement is performedon several identically prepared systems, one cannot in general expect the same 'outcome.

这并不是因为缺少所描述系统的信息;

相反,这是因为“测量”的结果本质上是不可预测的。

This is not because welack information about the systems described;

rather, it isbecause the outcome of the 'measurement is inherentlyunpredictable.

不确定性Uncertainty

海森堡不确定性原理提出,它表明在量子力学中,无法同时精确确定粒子的位置和动量。这改变了我们对自然界的确定性观念,引入了随机性和概率性的概念。

叠加原理(线性)superposition (linearity)

叠加原理允许多个量子态以线性方式叠加,使得粒子可以同时处于多个状态。这一性质在量子计算和量子信息处理中具有重要意义,因为它允许处理大规模的信息并进行并行计算。

纠缠entanglement

纠缠是一种奇特的现象,其中两个或多个粒子之间存在特殊的相互依赖关系。改变一个粒子的状态会立即影响与之纠缠的粒子的状态,即使它们之间距离很远。这一性质在量子通信和量子密码学等领域具有重要应用,也挑战了经典物理的观点。

虚数的常见基本运算

虚数通常用符号 “i” 或 “j” 来表示,它定义为满足以下条件的数:i 2 = − 1 i^2 = -1i 2 =−1

加法和减法:

(a+bi)+(c+di)=(a+c)+(b+d)i

(a+bi)−(c+di)=(a−c)+(b−d)i

乘法:

(a+bi)⋅(c+di)=(ac−bd)+(ad+bc)i

除法:

c+dia+bi=c2+d2(a+bi)⋅(c−di)

共轭复数:

共轭复数: a+bi=a−bi

模:

模: ∣a+bi∣=a2+b2

De Moivre 定理:

(r⋅eiθ)n=rn⋅einθ

欧拉公式(Euler’s Formula):

欧拉公式的三角函数形式表示如下:

eiθ=cos(θ)+isin(θ)

可以将欧拉公式表示为三角函数的复数幂形式:

cos(θ)=2eiθ+e−iθ

sin(θ)=2ieiθ−e−iθ

矩阵的常见基本运算

矩阵加法:对应位置的元素相加

C=A+B

Cij=Aij+Bij

矩阵减法:对应位置的元素相减。

D=A−B

Dij=Aij−Bij

矩阵乘法:需要满足维度匹配规则。对于两个矩阵A ( m × n ) A(m × n)A(m×n)和B ( n × p ) B(n × p)B(n×p),有

C=A⋅B

Cij=k=1∑nAik⋅Bkj

矩阵与标量的乘法:将矩阵的每个元素与一个标量相乘

B=k⋅A

Bij=k⋅Aij

矩阵的转置:将矩阵的行与列互换得到的新矩阵

AT

矩阵的逆:

A−1

酉矩阵U和厄米矩阵H

酉矩阵(Unitary Matrix):

如果一个矩阵M的共轭转置等于其逆矩阵,那么它被称为酉矩阵。通常使用符号U来表示酉矩阵。表示一个特定的酉矩阵U:

U∗=U−1

厄米矩阵(Hermitian Matrix):

如果一个矩阵M的共轭转置等于它自己,那么它被称为厄米矩阵。通常使用符号H来表示厄米矩阵。表示一个特定的厄米矩阵H:

H∗=H

2、Enter into the quantum world进入量子世界

The Qubit

量子比特,通常称为Qubit(quantum bit),是量子计算和量子信息科学中的基本单位。与经典计算中的比特(0和1)不同,量子比特可以处于多种状态的叠加,这是量子计算的基础。

Qubit的基本性质

  1. 叠加和纠缠:

与经典比特只能处于0或1状态不同,Qubit可以处于这两种状态的叠加态。这意味着Qubit可以同时处于0和1状态,具有更大的信息容量。此外,Qubit之间还可以发生量子纠缠,其中两个或多个Qubit的状态变得相互依赖,无法单独描述。

  1. 测量:
    当对一个Qubit进行测量时,它会坍缩到其中一个基本状态(0或1)上,而且这个过程是随机的,受到α和β的概率幅度影响。这种性质使得量子计算与经典计算有所不同,可以进行并行计算。
  2. 量子门:
    类似于经典计算中的逻辑门,量子计算中有量子门操作。量子门可以改变Qubit的状态,实现不同的量子计算操作。一些常见的量子门包括Hadamard门、CNOT门、以及Pauli-X、Pauli-Y和Pauli-Z门等。
  3. 应用领域:
    量子比特的特性使得它们在密码学、材料科学、优化问题和模拟量子系统等领域具有潜在的重要应用。最引人注目的应用之一是量子计算,它可以在某些情况下执行经典计算无法完成的任务,如量子因子分解和量子搜索算法。

Qubit是量子信息科学的基础,其独特性质使得量子计算和通信具有巨大的潜力,可能在未来解决一些复杂问题和加强加密安全性。

Qubit的基本概念

Qubit是量子信息处理的基本单元,类似于经典计算中的比特。一个Qubit可以表示为一个线性组合,通常用数学表示为:

∣ψ⟩=α∣0⟩+β∣1⟩

其中,α和β是复数,|0⟩和|1⟩分别表示Qubit在状态0和1时的基本状态。

在数学上,|0⟩和|1⟩可以表示为一个列向量,通常写作:

∣0⟩=[10]

∣1⟩=[01]

在量子力学中,∣ 0 ⟩ |0\rangle∣0⟩ 表示量子比特(Qubit)处于其基本状态 0。这个列向量表示 Qubit 的状态,其中第一个元素 1 表示 Qubit 处于状态 0,而第二个元素 0 表示 Qubit 不处于状态 1。

Qubit的基本性质

∣ψ⟩=α∣0⟩+β∣1⟩

是关于量子比特(Qubit)状态的波函数表示,其中 α \alphaα 和 β \betaβ 是复数,通常是复数振幅。这个波函数表示满足以下性质:

归一性(Normalization): 波函数必须是归一化的,即 ∣ α ∣ 2 + ∣ β ∣ 2 = 1 |\alpha|^2 + |\beta|^2 = 1∣α∣ 2 +∣β∣ 2 =1。这确保了Qubit的总概率是1,因为概率守恒。

线性组合: 波函数是两个基本状态 ∣ 0 ⟩ |0\rangle∣0⟩ 和 ∣ 1 ⟩ |1\rangle∣1⟩ 的线性组合,其中 α \alphaα 和 β \betaβ 是线性系数。这意味着Qubit可以同时处于这两种状态的叠加。

复振幅: α \alphaα 和 β \betaβ 是复数,表示了Qubit处于不同状态的幅度和相位信息。这是量子计算中的一个关键特性,使得Qubit具有比经典比特更多的表达能力。

概率幅度: ∣ α ∣ 2 |\alpha|^2∣α∣ 2  表示Qubit处于状态 ∣ 0 ⟩ |0\rangle∣0⟩ 的概率,而 ∣ β ∣ 2 |\beta|^2∣β∣ 2  表示Qubit处于状态 ∣ 1 ⟩ |1\rangle∣1⟩ 的概率。这些概率幅度是测量Qubit时处于相应状态的概率。

复共轭: 复数 α \alphaα 和 β \betaβ 的复共轭分别表示为 α ∗ \alpha^*α ∗ 和 β ∗ \beta^*β ∗ ,用于计算Qubit的共轭转置态 ∣ ψ ∗ ⟩ |\psi^*\rangle∣ψ ∗ ⟩。

叠加态: 当 α \alphaα 和 β \betaβ 都不为零时,∣ ψ ⟩ |\psi\rangle∣ψ⟩ 是叠加态,这意味着Qubit同时具有状态 ∣ 0 ⟩ |0\rangle∣0⟩ 和 ∣ 1 ⟩ |1\rangle∣1⟩,并且测量Qubit时会坍缩到其中一个状态,根据概率幅度的大小。

这个波函数表示是描述量子比特状态的一种方式,其性质在量子计算和量子信息理论中非常重要。它允许Qubit在经典比特无法实现的方式中进行计算,这是量子计算的基础。

The Beamspilter量子分束镜

量子分束镜实验

量子分束镜实验是一种重要的实验,用于探索和展示量子力学中的干涉和分离效应。这些实验通常涉及到使用量子光学元件,如量子分束镜,来研究和操作单光子和量子态。

  1. Young’s 双缝实验: 一个经典的量子分束镜实验是Young’s 双缝实验的量子版本。在这个实验中,单个光子发射到一个具有两个狭缝的屏幕,然后通过量子分束镜。根据量子力学的性质,光子会同时通过两个缝,形成干涉图案,就像波动性质一样。
  2. 单光子干涉: 量子分束镜实验通常侧重于研究单个光子的行为。这意味着实验被设计成在单光子水平上操作,以研究光子的干涉、叠加和分离效应。这揭示了量子力学中粒子和波动性质的相互关系。Hong-Ou-Mandel 实验: 这是另一个重要的量子分束镜实验,用于探索光子对撞的量子性质。在这个实验中,两个光子被发送到一个量子分束镜,它们通过不同的通道并在一个探测器上发生碰撞。经典情况下,我们期望它们会同时到达探测器。然而,根据量子力学,它们倾向于碰撞在一起,表现出粒子性的互斥效应。
  3. 波导分束镜实验: 波导分束镜是用于光子传导的波导系统中的量子分束镜。这些实验通常包括将光子引导到不同的波导通道,以实现分束、合并和控制光子,这对于量子通信和量子计算具有关键意义。
  1. 量子信息科学: 量子分束镜实验在量子信息科学中具有广泛的应用,包括量子计算、量子通信、量子密钥分发和量子干涉实验。它们有助于研究和展示量子态的奇特性质,如叠加态和纠缠态。

实验1

光子源(Photon Source): 这是一个用于产生单个光子的装置。光子通常产生自发射二极管(SPDC)等特定光源。这个实验中,光子源用于创建一对纠缠的光子,其中一个光子称为 “信号光子”,另一个称为 “同步光子”。

分束镜(Beam Splitter): 量子分束镜是一个用于将入射的光束分成两个方向的光学器件。在这个实验中,它通常用于将信号光子和同步光子分开,让它们进入不同的路径。

一对光子探测器(Pair of Photon Detectors): 这是两个光子探测器,用于检测信号光子和同步光子。这些探测器可以分别测量光子的到达时间和位置,以及光子的极化或能量等信息。这些探测器通常用于验证光子之间的纠缠关系。

考虑粒子在不同路径上的输入情况时:

  1. 将粒子引入上分支: 当粒子(例如,光子)被引入分束镜的上分支时,根据量子力学的性质,粒子有一定的概率在上分支通过分束镜,而有一定的概率在下分支通过分束镜。这是量子干涉的结果。因此,实验结果观察到的是粒子在输出端口上分支和下分支中以随机的方式出现。
  2. 将粒子引入下分支: 同样地,如果将粒子引入下分支,实验的结果仍然会观察到类似的行为。粒子将有一定的概率通过下分支和一定的概率通过上分支。因此,不论粒子是从上分支还是下分支输入,实验观察到的输出将以相等的概率出现在两个分支中。

这种随机性和分支的等概率出现是典型的量子干涉效应。这些效应表明,在量子级别,粒子可以同时存在于多个路径上,因此它们以概率分布的方式出现在不同的输出通道中。体现量子力学中一些基本概念的体现,如叠加态和概率幅度。

实验2

涉及到一个与量子干涉和量子光学有关的系统,其中包括一对分束镜和完全反射镜。光子可以沿两条不同的路径(标为0和1)传播。这种类型的实验通常用于探索光子的量子性质和在不同路径上的干涉效应。+

  1. 光子源: 实验开始于一个光子源,产生一对纠缠的光子。
  2. 分束镜1: 第一个分束镜用于将一对光子分开,其中一个光子传播到路径0,另一个传播到路径1。
  3. 完全反射镜: 在路径0和路径1上,存在完全反射镜,这些镜子可以将光子完全反射,使其在路径上来回传播。
  4. 分束镜2: 第二个分束镜用于重新将两个光子合并,它们可能会在路径0和路径1上发生干涉。

  5. 探测器: 最后,可以放置光子探测器来检测合并后的光子,观察它们的到达时间和可能的干涉效应。

这种实验通常用于研究量子干涉和光子的量子性质。光子被分离并重新合并,因此它们可以同时存在于不同路径上,产生干涉效应。实验的结果显示出不同路径上的光子的干涉模式,这是量子力学的重要现象之一。

实验结果表明,尽管根据经典概率理论,光子应该以均等的概率分布在两个检测器之间但实际的观测结果是光子总是被检测到一个检测器,而不是以随机的方式分布在两个检测器之间。这是一个经典的“二值结果”(binary outcome)或“全部或无”的现象。

这种现象通常与光子的量子性质以及光学干涉效应相关。在某些情况下,当两条光子路径之间存在相位差(phase difference)或其他量子相互作用时,光子会以“全部或无”的方式倾向于被检测到。这是量子纠缠和干涉的结果。

在这种情况下,观测结果可能符合某种量子态,例如纠缠态或相干态,使得光子总是被检测到一个特定的检测器。这种现象对于量子信息科学和量子计算中的应用非常重要,因为它可以用于构建量子门操作和量子比特。

要理解这一现象的具体原理,需要深入研究实验的详细参数和量子态的性质。这种“全部或无”的结果通常涉及到量子力学的奇特性质,如纠缠、叠加和相位差,而不是传统的经典概率分布。这强调了量子力学与经典物理之间的根本差异,是量子信息科学的核心。

实验3:涵盖了量子力学中的重要概念,包括波粒二象性、叠加态和观测效应。

1、量子粒子不遵循经典物理中的直觉规则。它突显了量子力学的非经典性质

根据量子力学,粒子(如光子、电子、原子等)确实表现出“双重性质”,即它们似乎同时“走两条路径”。这是波粒二象性的核心概念,允许粒子在某种程度上表现出波动性质和粒子性质。

即使一个光子“选择”了上分支,它的波函数仍包括了下分支的贡献,因为它存在于叠加态中。当下分支被阻挡时,干涉效应仍然会影响光子,因为它的波函数在不同路径之间存在相互作用。

2、观测会坍缩粒子的波函数,从而确定其位置或状态。

当尝试确定粒子在双缝实验等实验中“究竟走了哪条路径”时,这个观测过程本身会影响结果。这是观测效应的经典例子,被称为“双缝干涉实验中的哥伦布效应”(Complementarity in the double-slit experiment)。通过观测,你迫使粒子在实验中表现得像经典粒子一样,只走一条路径,而不是像波一样在两条路径上叠加。

Quantum Model

Analysing the beamsplitter

当一个量子系统处于叠加态时,测量的结果是根据量子振幅的模的平方来确定的。这正是为什么在具有相等振幅的叠加态中,有相等的概率观测到不同的状态。

如果一个光子处于叠加态 |a0⟩ + |a1⟩:


观测到 |0⟩ 的概率:

  • LaTeX表示:

P(∣0⟩)=∣a0∣2

观测到 |1⟩ 的概率:

  • LaTeX表示:

P(∣1⟩)=∣a1∣2

概率之和为1:

  • LaTeX表示:

∣a0∣2+∣a1∣2=1

这些公式描述了光子处于叠加态时的测量概率,其中振幅的模的平方决定了观测到相应状态的概率。

当振幅满足概率归一化条件时,观测结果将总是在 |0⟩ 或 |1⟩ 中之一,且概率之和为1。

这解释了为什么在经典的50/50分束镜中,每个路径上的振幅都是1/√2,以获得两个路径的50/50观测概率。

Fundamental Assumptions基本假设

Linearity线性性

加法性(Additivity):

如果一个操作对一个量子态产生效应A,对另一个量子态产生效应B,那么它对这两个态的叠加态也会产生效应A加B。换句话说,操作在态的叠加上是可加的。

LaTeX表示:

O(A)+O(B)=O(A+B)

根据线性性的原则,我们可以推导出分束镜对任何叠加态 a|0⟩ + b|1⟩ 的作用:

  1. 分束镜(|0⟩) = (|0⟩ + |1⟩) / √2
  2. 分束镜(|1⟩) = (|0⟩ - |1⟩) / √2

因此,分束镜作用在 a|0⟩ + b|1⟩ 上将得到:

分束镜(a∣0⟩+b∣1⟩)=a⋅分束镜(∣0⟩)+b⋅分束镜(∣1⟩)

将上述两个公式代入右侧,我们可以计算分束镜对叠加态 a|0⟩ + b|1⟩ 的作用。这是量子力学中线性性的一个示例,它是对操作如何作用于叠加态的关键原则之一。

乘法性(Homogeneity):

  • 如果一个操作对一个量子态产生效应A,那么它对该态的所有倍数(标量)也会产生效应aA,其中a是复数。

LaTeX表示:

O(aA)=aO(A)

Unitarity概率守恒

不仅涉及到线性性,还要求操作是幺正的。在量子力学中,Unitarity 是一个关键原则,它确保操作在量子态上保持概率守恒。Unitary 操作满足以下两个关键条件:

  • 概率守恒: Unitary 操作保持概率守恒,即如果一个系统在初始状态下是一个概率归一化的态,那么经过 Unitary 操作后,系统仍然处于概率归一化的态。

∑∣ci∣2=1

其中,c i c_ic i 是量子态的幅度。

  • 可逆性: Unitary 操作是可逆的,它有一个逆操作,将系统从操作后的状态还原到原始状态。

U⋅U†=U†⋅U=I

分束镜对 |0⟩ 和 |1⟩ 的作用,这是 Unitary 操作的一个示例,并强调了它保持概率守恒。

Matrix formalism

使用矩阵符号表示的量子力学,也称为Matrix Formalism,是一种用于描述和计算量子系统行为的数学工具。以下是关于Matrix Formalism 的一些重要概念:

量子态和态矢量: 在Matrix Formalism中,量子态通常表示为一个列矢量,称为态矢量(State Vector)或态矢(Ket)。例如,对于一个具有两个可能状态的量子比特,|0⟩ 和 |1⟩,我们可以使用如下的态矢量表示:

∣ψ⟩=[αβ]

其中,α和β是复数振幅,代表了量子比特处于 |0⟩ 和 |1⟩ 状态的概率振幅。

操作和算符: Matrix Formalism中的量子操作和观测通常由矩阵表示,称为算符(Operator)。算符作用于态矢量,以描述系统的演化或测量。例如,泡利 X 算符表示对量子比特的逻辑非(NOT)操作:

X=[0110]

其中,X 矩阵作用于态矢量 |0⟩ 和 |1⟩,实现了逻辑非操作。

叠加态和幺正演化: Matrix Formalism中的叠加态可以表示为多个态矢量的线性组合。例如,一个处于叠加态的两量子比特系统可以表示为:

∣ψ⟩=α∣00⟩+β∣01⟩+γ∣10⟩+δ∣11⟩

这个态可以使用矩阵运算来描述其演化,例如通过幺正演化算符,使其在时间演化中保持概率守恒。

测量和测量算符: 量子测量可以通过测量算符来描述,这些算符对量子态进行投影,并得到测量结果。例如,对于一个单量子比特的测量算符 M,测量结果为 0 或 1,可以表示为:

M0=[1000],M1=[0001]

这里,M0 和 M1 是对应于测量结果 0 和 1 的测量算符。

通过使用矩阵运算和线性代数技巧,我们可以精确地描述和预测量子态的演化和测量结果。

共轭转置"(conjugate-transpose)

在量子力学和线性代数中,"共轭转置"(conjugate-transpose)是一个操作,通常用符号†表示,它结合了两个操作:共轭和转置。

  1. 共轭(Conjugate): 对于复数,共轭操作是将一个复数的虚部取负,即将复数 a + bi 的共轭为 a - bi。对于量子力学中的态矢量和算符,共轭是将复数振幅的每个元素都取共轭。
  2. 转置(Transpose): 转置操作是将矩阵的行和列交换,即将矩阵的第 i 行变为第 i 列。对于复数矩阵,转置不会改变每个元素的共轭。

因此,"共轭转置"操作将复数振幅的每个元素取共轭,并将矩阵的行和列交换。对于复数矩阵 A,其共轭转置通常表示为 A†。

在量子力学中,共轭转置操作常用于描述算符的厄密共轭(Hermitian Conjugate),这是一个重要的概念,特别是在描述测量和算符的性质时。共轭转置操作还在量子态的演化和态矢量的描述中发挥关键作用,因为它保持了内积和态矢量的概率归一化,从而确保概率守恒。

the conjugate-transpose (Some simple manipulation)概率条件

共轭转置(conjugate-transpose)在量子力学中的“概率条件”是指对于一个算符,当其应用于一个态矢量后,该算符的共轭转置与其自身的乘积等于单位算符。这一条件与量子力学中的概率守恒和测量有关,因为它确保了测量后的概率分布保持不变。

具体来说,对于一个算符 A,其共轭转置通常表示为 A†。概率条件表述为:

A⋅A†=A†⋅A=I

其中,A表示该算符,A†表示其共轭转置,I表示单位算符。这个条件强调了以下几点:

Unitarity via matrices

Unitarity(幺正性)在矩阵表示中是一个重要的概念,特别在量子力学中。Unitarity 确保了操作的可逆性和概率守恒。

对于一个操作矩阵 U,它被认为是 unitary 如果其共轭转置等于其逆矩阵。这可以表示为:

U†U=UU†=I

其中,U† 表示 U 的共轭转置,I 是单位矩阵。这个条件有几个重要含义:

  1. 概率守恒: Unitary 矩阵保持概率守恒。如果 U 用于描述量子系统的演化,那么对于任何初始态,系统的总概率分布在演化后仍然为1。这是因为 U 和 U† 的乘积等于单位矩阵,它保持了概率归一化条件。
  2. 可逆性: Unitary 操作是可逆的,它有一个逆操作 U^-1,将系统从操作后的状态还原到原始状态。
  1. 保持内积不变: Unitary 操作保持量子态之间的内积(内积在量子力学中与概率幅度相关)不变。这是因为 U 和 U† 的乘积等于单位矩阵,它保持了内积的值。

Unitary 矩阵通常用于表示量子门操作,描述量子系统的演化,并在量子计算和量子信息处理中发挥重要作用。

分束器实验描述

Beamspilter Quantum Circuits

一个量子比特可以用单条线表示。这条线上的箭头表示了量子比特的叠加态。

线路表述:

Hadamard门

它通常用于创建相等的叠加态。Hadamard门的矩阵表示如下:

H=(1/sqrt(2))∗∣11∣∣1−1∣

Hadamard门是量子计算中的一种基本逻辑门,用于将一个量子比特从基本状态 |0⟩ 和 |1⟩ 转换为相等的叠加态。它的作用是:

H∣0⟩=(1/sqrt(2))∗(∣0⟩+∣1⟩)

H∣1⟩=(1/sqrt(2))∗(∣0⟩−∣1⟩)

Hadamard门在量子计算中具有重要的应用,特别是在创建和操作量子叠加态时。它用于将经典位操作扩展到量子位,以实现量子计算中的各种算法和任务。与光学中的分束器(beamsplitter)相比,Hadamard门更常用于量子计算中,因为它在量子电路中更容易实现和操作。

φ门

φ门,也称为相位门(Phase Gate),有时也被称为相位延迟门。

相位门的主要作用是改变量子比特的相位,同时保持振幅不变。

它的矩阵表示如下,其中 φ φφ 表示相位角度:

Phase Gate (P)=(100eiφ)

其中,φ(φ为相位角度)表示引入的相位变化。φ门常用于量子算法和量子信息处理中,以实现相位控制和相位翻转等操作。这个门在量子计算中发挥重要作用,特别是在量子相位估计、量子编码和量子算法中。

门计算

在量子电路和量子计算的表示中,通常有以下惯例:


  1. 电路图示: 量子电路图通常是从左到右阅读的,表示操作按顺序应用于量子比特。输入态从左边进入电路,输出态从右边出来。这种表示法使得电路的流程和顺序更容易理解。

  2. 方程和数学表达式: 方程和数学表达式通常是从右到左阅读的。这是因为量子操作通常按照线性代数的规则进行组合。例如,如果有一个操作 A,然后是操作 B,它们按照数学表达式的顺序表示为 B * A,其中 B 先应用于 A。

Multiple qubits

多量子比特系统是量子计算的核心。在量子计算中,多个量子比特可以组合在一起形成复杂的量子态,并允许执行并行计算和量子纠缠等现象。

  1. 多量子比特表示: 在多量子比特系统中,每个量子比特可以处于叠加态的组合,例如 |00⟩、|01⟩、|10⟩、|11⟩ 等。这些状态表示多量子比特的组合。一个 N 量子比特系统有 2^N 个可能的状态。
  2. 量子纠缠: 多量子比特系统的一个重要特性是量子纠缠。当多量子比特之间存在相互依赖的关系时,它们可以处于纠缠态,其中一个比特的状态受其他比特的状态影响,即使它们之间存在空间距离。
  3. 并行计算: 多量子比特系统具有并行计算的潜力。通过操作多个量子比特,可以同时处理多个计算任务,这在某些情况下可以显著提高计算速度。
  1. 多量子比特门: 多量子比特系统使用多量子比特门进行操作,这些门可以实现比单量子比特门更复杂的计算。例如,CNOT门(控制非门)用于实现量子纠缠和量子通信。

  2. 量子算法: 多量子比特系统为实现特定的量子算法提供了潜力。著名的Shor算法和Grover算法等都涉及多量子比特的运算。

3、Quantum Circuit量子电路

Tensor Product张量积

在量子电路中,张量积(Tensor Product)是用于描述多个量子比特之间的组合和相互作用的数学工具。张量积通常表示为符号 ⊗。下面是关于张量积在矩阵运算中的应用的介绍:

单量子比特张量积: 如果有两个单量子比特,它们可以通过张量积组合在一起。对于两个单量子比特 A 和 B,它们的张量积表示如下:

A⊗B=[A00BA10BA01BA11B]

  1. 这种操作将两个单量子比特的状态组合成一个复合系统的状态。

多量子比特张量积: 对于多个量子比特,它们的状态可以通过连续的张量积组合在一起。例如,对于三个单量子比特 A、B 和 C,它们的张量积表示如下:

A⊗B⊗C=(A⊗B)⊗C

这种组合方式可用于描述多量子比特系统的状态。

张量积与矩阵运算: 在量子电路中,张量积也用于表示多量子比特系统上的操作。例如,如果有一个二量子比特门操作 U 作用在两个量子比特上,它的作用可以表示为:

U=UA⊗UB

其中,U A U_AU A  是操作作用在量子比特 A 上的矩阵,U B U_BU B 是操作作用在量子比特 B 上的矩阵。通过将它们的张量积计算,可以得到 U 的矩阵表示。张量积在量子计算中非常重要,用于表示多量子比特系统的状态和操作。

tensor product (cont)

张量积(Tensor Product)是量子力学和量子计算中的重要概念,用于描述多个量子比特之间的组合和相互作用。继续讨论张量积的应用:


张量积与纠缠态: 张量积在描述纠缠态时发挥关键作用。当两个或多个量子比特纠缠在一起时,它们的状态可以用张量积来表示。例如,两个单量子比特 A 和 B 的纠缠态可以表示为:

∣ψ⟩=21(∣00⟩+∣11⟩)=21∣0⟩⊗∣0⟩+21∣1⟩⊗∣1⟩

这表示两个量子比特之间存在纠缠关系,它们的状态不能被分解为各自的独立态。

张量积与量子操作: 在量子计算中,量子操作通常作用在多个量子比特上。这些操作可以通过张量积来表示。例如,一个控制非门(CNOT)操作,其中一个量子比特是控制比特,另一个是目标比特,可以表示为:

CNOT=∣0⟩⟨0∣⊗I+∣1⟩⟨1∣⊗X

这表示控制非门同时对两个量子比特进行操作,其中 |0⟩ 和 |1⟩ 是控制比特的态,I 是单位矩阵,X 是Pauli-X门。

多量子比特系统的状态: 多量子比特系统的状态可以用张量积来表示。例如,一个三量子比特系统的状态可以写为:

∣ψ⟩=∣a⟩⊗∣b⟩⊗∣c⟩

这表示三个量子比特的状态独立组合在一起。

张量积在量子计算中用于处理多量子比特系统的状态、操作和相互作用,它是量子力学的数学基础之一。通过张量积,可以描述和处理复杂的多量子比特系统,这对于量子计算和量子通信等领域至关重要。

Classical Circuits经典电路

在量子电路中,经典电路(Classical Circuits)是用于经典位的计算和逻辑操作的电路,与量子电路相对。

  1. 经典位(Classical Bits): 经典电路中的信息通常由经典位表示,它们只有两个可能的状态,通常用 0 和 1 来表示。

逻辑门(Logic Gates): 经典电路使用不同的逻辑门来执行各种计算和逻辑操作。

  • 与门(AND Gate):表示两个输入位的逻辑与操作。

AND(x,y)=x⋅y

或门(OR Gate):表示两个输入位的逻辑或操作。

OR(x,y)=x+y

非门(NOT Gate):表示一个输入位的逻辑非操作。

NOT(x)=x

异或门(XOR Gate):表示两个输入位的逻辑异或操作。

XOR(x,y)=x⊕y

  1. 布尔代数(Boolean Algebra): 经典电路通常遵循布尔代数的规则,其中经典位可以进行布尔运算,如与、或、非、异或等。这些运算用于设计和分析经典电路。
    将一组输入变量映射到一个二进制输出值。下面是一些常见的布尔函数表达和标准形式:

布尔函数表达式(Formula): 布尔函数可以用布尔表达式表示,其中使用逻辑运算符(如与“&”、或 “v”、非 “一”)来定义函数的行为。例如,布尔函数f(x1,x2)=(x1&x2)∨(¬x1∨x2) 表示当x1等于 x2 时返回 1,否则返回 0。这是一种直接的方式来表示布尔函数。

析取范式(Disjunctive Normal Form,DNF):DNF 是一种标准形式,用于表示布尔函数。它表示为多个子句的析取,每个子句是由多个变量及其否定组成的合取。

例如,( x 1 & x 2 ) ∨ ( ¬ x 1 & x 2 ) ∨ ( x 1 & ¬ x 2 ) (x_1 \& x_2) \vee (\neg x_1 \& x_2) \vee (x_1 \& \neg x_2)(x 1 &x 2 )∨(¬x 1 &x 2 )∨(x1 &¬x 2 ) 是一个布尔函数的 DNF 表示。

合取范式(Conjunctive Normal Form,CNF): CNF 是另一种标准形式,也用于表示布尔函数。它表示为多个子句的合取,每个子句是由多个变量及其否定组成的析取。例如,( x 1 ∨ ¬ x 2 ) & ( ¬ x 1 ∨ x 2 ) & ( x 1 ∨ x 2 ) (x_1 \vee \neg x_2) \& (\neg x_1 \vee x_2) \& (x_1 \vee x_2)(x 1 ∨¬x 2 )&(¬x 1 ∨x 2 )&(x 1 ∨x 2 ) 是一个布尔函数的 CNF 表示。

在将一个量子电路 A 转换为另一个量子电路 B 时,可以按照以下方法进行:

  1. 每个门转化为电路: 首先,确保电路 A 中的每个量子门可以被转化为一个等效的电路。这意味着每个门都必须有一个对应的电路表示。这通常涉及到将门的功能拆分为更基本的操作,然后构建等效的电路。
  2. 使用电路替代门: 一旦每个门都有了等效的电路表示,那么可以使用这些电路来构建电路 B,而不是使用电路 A 中的原始门。这意味着将电路 A 中的门替换为等效的电路。
  3. 高效率的: 这个过程通常是高效的,因为等效电路的构建可以根据电路 A 中的门的类型和功能进行自动化。这种转换可以通过计算机程序来完成,以确保精确性和效率。

这种转换的主要目的是将一个量子电路表示方式转化为另一种,以满足不同的需求或优化目的。这可以在量子算法的设计和优化中发挥关键作用,确保电路的正确性和高效性。

Reversibility可逆性

可逆性(Reversibility)是量子电路中的一个重要概念,它表示一个量子操作(门)可以完全逆转,不会导致信息的丧失。这一性质对于量子计算和信息处理至关重要。

  1. 可逆性概念: 一个量子操作是可逆的,如果它可以完全逆转,不会导致信息的丧失。这意味着对于每个可能的输出状态,存在唯一的逆操作将其映射回输入状态。

可逆操作的数学表示:可逆操作通常表示为一个矩阵 U UU,其中存在逆矩阵 U − 1 U^{-1}U −1 ,使得 U − 1 U = U U − 1 = I U^{-1}U = UU^{-1} = IU −1 U=UU −1 =I,其中 I II 是单位矩阵。这表示 U UU 的操作可以被逆操作 U − 1 U^{-1}U −1  完全撤销。

可逆性的公式表示: 可逆操作的数学公式可以表示为:

UU−1=U−1U=I

  1. 这个公式强调了可逆操作和逆操作之间的关系,以及它们的乘积等于单位矩阵。

示例: 例如,Hadamard 门(H门)是一个可逆操作,其矩阵表示为:

H=21[111−1]

H门是可逆的,因为存在逆操作 H − 1 H^{-1}H −1 ,满足 H H − 1 = H − 1 H = I HH^{-1} = H^{-1}H = IHH −1 =H −1 H=I。

可逆性是量子计算的一个基本原则,因为它确保计算的可逆性和信息的保持。在量子计算中,几乎所有操作都是可逆的,以确保计算的可撤销性。这对于量子算法和量子通信非常重要。

可逆门

可逆门(Reversible gates)是一类能够保持信息完整性的逻辑门,其中每个可能的输入都与一个唯一的输出相对应。在量子计算和量子电路中,可逆门是至关重要的,因为它们允许信息的精确反演,无论是在经典还是量子计算中。

以下是使门可逆的要求和特点:

  1. 唯一映射: 可逆门必须是一种唯一的映射,其中每个可能的输入都与一个唯一的输出相对应。这意味着不能有两个不同的输入映射到相同的输出。
  2. 输出数量等于输入数量: 如果一个门接受 n 个输入位,那么它必须产生 n 个输出位。这是因为门的功能必须是一对一的,以确保信息的无损传递。
  3. 排列(Permutation): 任何可逆门都是一个排列,它将输入的排列(一种有序的排列方式)映射到输出的排列。因此,可逆门实际上是排列群的一部分,其中每个排列都是一种双射(bijective)。
  1. 标准逻辑门: 大多数传统的标准逻辑门(如 AND、OR、XOR)是不可逆的,因为它们不满足上述条件。这些门通常不具备唯一映射和等输入输出数量的特性。

在量子计算中,可逆门是基本的操作,它们被用于构建量子电路,以确保计算的可撤销性和信息完整性。因此,可逆门在量子计算中起到关键作用。

Garbage collection 垃圾收集

在量子计算中,垃圾收集(Garbage collection)是一个重要的概念,它涉及到清除不再需要的量子比特(qubit)以释放资源并维护计算的正确性。垃圾收集是确保量子计算正确性和资源有效利用的关键步骤。以下是垃圾收集的概念以及数学表示:

  1. 垃圾收集概念: 在量子计算中,垃圾收集是指清除不再需要的量子比特或其他计算资源的过程。这些不再需要的资源可能是在计算的中间阶段产生的,但在后续计算中不再使用。垃圾收集旨在释放这些资源,以便它们可以被重新分配给其他操作或存储。

垃圾收集的数学表示: 垃圾收集通常通过适当的量子门和操作来实现。其数学表示可以用以下公式表示:

Garbage Collection(q1,q2,…,qn)=U(q1,q2,…,qn)

这里,q 1 , q 2 , … , q n q_1, q_2, \ldots, q_nq 1 ,q 2 ,…,q n  表示不再需要的量子比特,而 U ( q 1 , q 2 , … , q n ) U(q_1, q_2, \ldots, q_n)U(q 1 ,q2 ,…,qn ) 表示将这些量子比特清除的垃圾收集操作。这个操作通常会将不再需要的量子比特重新设置为初始状态,以确保它们不会影响后续计算。

  1. 垃圾收集的重要性: 垃圾收集是量子计算中的一个重要概念,因为量子比特的数量和资源是有限的。正确的垃圾收集可以确保计算的正确性和效率,防止不必要的资源泄漏。

垃圾收集是量子计算中的关键操作,它确保了计算的正确性和资源的有效利用。在实际的量子算法和电路设计中,垃圾收集是一个重要的优化和管理方面。

兰道尔原理(Landauer’s Principle)

是以物理学家Rolf Landauer的名字命名的,它是热力学和信息理论领域的一项基本原理。它建立了信息理论和热力学之间的联系,通过确定信息擦除和能量散失之间的关系。

兰道尔原理陈述了这样一个事实:任何不可逆的计算,擦除一个比特的信息,必须散失最少数量的能量,具体是以热的形式。这个最小的能量散失被称为兰道尔极限,它可以用以下公式表示:

E=kTln(2)

其中:

  • E 是最小的能量散失(以焦耳为单位)。
  • k 是玻尔兹曼常数(大约为每开尔文1.38 x 10^(-23)焦耳)。
  • T 是温度(以开尔文为单位)。
  • ln(2) 是2的自然对数。

关于兰道尔原理的要点:

  1. 信息擦除: 该原理特别关注计算过程中信息的擦除。当信息被擦除(例如,将比特从1擦除为0)时,它会被不可逆地丧失。
  2. 与热力学的关系: 兰道尔原理通过量化信息擦除导致的热能散失,将信息理论与热力学相联系。这表明信息处理背后存在与热力学相关的基本成本。
  3. 最小能量散失: 兰道尔极限代表了信息擦除过程中的最小能量散失。它是一个基本的下限,任何进行信息擦除的计算过程都必须满足这一极限。
  4. 可逆计算: 可逆计算,它能够保留信息,从原理上可以避免根据兰道尔原理所规定的能量散失。可逆计算是在量子计算和低功耗经典计算领域的研究中的一个重要领域。

兰道尔原理对于设计高效能量的计算系统和信息理论与热力学之间的关系具有重要意义,它是关于计算的物理极限的一个基本概念。

Garbage collection in reversible computing

Bennett showed how to get rid of junk by ‘uncomputing’.

Bennett的垃圾收集的目标是最小化资源浪费,并在量子计算中保持计算的可逆性,其中高效使用有限资源是一个关键挑战。这个概念与兰道尔原理密切相关,兰道尔原理建立了信息擦除和计算中能量散失之间的关系。

在可逆计算中,垃圾收集与“取消计算”(uncomputing)紧密相关,这个概念最早由Charles H. Bennett提出。可逆计算中的垃圾收集涉及清除或消除计算过程中生成的中间和不必要的状态,有效地“取消计算”这些状态以释放资源并保持可逆性。

以下是关于可逆计算中的垃圾收集的简要概述:


  1. 取消计算: 取消计算是可逆计算中的一种技术,用于撤销某些计算步骤的效果。它涉及以相反的顺序执行计算,将系统还原到其初始状态。取消计算的目的是确保计算过程中不会丧失任何信息。
  2. 中间状态: 在计算中,特别是在量子计算中,会生成许多中间状态。这些状态是瞬时的,可以积累为“垃圾”,占用资源,包括量子比特。为了保持可逆性并最小化资源使用,这些中间状态需要被消除。
  3. 资源回收: 可逆计算中的垃圾收集旨在回收用于表示和存储中间状态的资源(例如量子比特、内存)。这是通过应用取消计算技术来撤销计算步骤的效果,将资源还原到其初始的非纠缠状态来实现的。
  1. 效率和可逆性: 垃圾收集对于可逆计算至关重要,因为它确保计算可以在不丧失任何信息的情况下被撤销。它有助于量子算法的整体效率,并有助于管理量子计算机中有限的资源。

  2. 量子误差修正: 垃圾收集还与量子误差修正相关,因为清理垃圾状态对于在计算过程中保持量子信息的完整性至关重要。量子误差修正编码通常包括垃圾收集技术作为其纠错程序的一部分。

垃圾收集和取消计算在可逆计算领域中起着至关重要的作用,尤其是在量子计算中,其中保持操作的可逆性和资源管理是基本挑战。这些技术对于实现高效且可靠的量子计算是必不可少的。

量子计算与量子密码(入门级-少图版)(2)https://developer.aliyun.com/article/1508501?spm=a2c6h.13148508.setting.17.7c4f4f0eltTVrD

目录
相关文章
|
6月前
|
并行计算 量子技术 数据安全/隐私保护
量子计算与量子密码(入门级-少图版)(2)
量子计算与量子密码(入门级-少图版)(2)
117 1
|
6月前
|
算法 Oracle 关系型数据库
量子计算与量子密码(入门级-少图版)(3)
量子计算与量子密码(入门级-少图版)(3)
123 0
|
6月前
|
机器学习/深度学习 算法 Oracle
量子计算与量子密码(入门级-少图版)(4)
量子计算与量子密码(入门级-少图版)(4)
147 0
|
12月前
|
机器学习/深度学习 算法 Oracle
量子计算与量子密码(入门级-少图版)(下)
量子计算与量子密码(入门级-少图版)
185 0
|
12月前
|
人工智能 算法 BI
量子计算与量子密码(入门级-少图版)(上)
量子计算与量子密码(入门级-少图版)
103 0
|
12月前
|
存储 Web App开发 并行计算
量子计算与量子密码(入门级-少图版)(中)
量子计算与量子密码(入门级-少图版)
127 0
|
12月前
|
人工智能 算法 BI
量子计算与量子密码(入门级)(上)
量子计算与量子密码(入门级)
189 0
|
12月前
|
存储 Web App开发 并行计算
量子计算与量子密码(入门级)(中)
量子计算与量子密码(入门级)
150 0
|
12月前
|
机器学习/深度学习 算法 Oracle
量子计算与量子密码(入门级)(下)
量子计算与量子密码(入门级)(中)
550 0