机器精度
大多数实数都无法用浮点数准确地表示,因此有必要知道两个相邻可表示的浮点数间的距离,它通常被叫做机器精度。
Julia 提供了 eps 函数,它可以给出 1.0 与下一个 Julia 能表示的浮点数之间的差值:
实例
julia> eps(Float32)
1.1920929f-7
julia> eps(Float64)
2.220446049250313e-16
julia> eps() # 与 eps(Float64) 相同
2.220446049250313e-16
这些值分别是 Float32 中的 2.0^-23 和 Float64 中的 2.0^-52。eps 函数也可以接受一个浮点值作为参数,然后给出这个值与下一个可表示的浮点数值之间的绝对差。也就是说,eps(x) 产生一个和 x 类型相同的值,并且 x + eps(x) 恰好是比 x 更大的下一个可表示的浮点值:
实例
julia> eps(1.0)
2.220446049250313e-16
julia> eps(1000.)
1.1368683772161603e-13
julia> eps(1e-27)
1.793662034335766e-43
julia> eps(0.0)
5.0e-324
两个相邻可表示的浮点数之间的距离并不是常数,数值越小,间距越小,数值越大,间距越大。换句话说,可表示的浮点数在实数轴上的零点附近最稠密,并沿着远离零点的方向以指数型的速度变得越来越稀疏。根据定义,eps(1.0) 与 eps(Float64) 相等,因为 1.0 是个 64 位浮点值。
Julia 也提供了 nextfloat 和 prevfloat 两个函数分别返回基于参数的下一个更大或更小的可表示的浮点数:
实例
julia> x = 1.25f0
1.25f0
julia> nextfloat(x)
1.2500001f0
julia> prevfloat(x)
1.2499999f0
julia> bitstring(prevfloat(x))
"00111111100111111111111111111111"
julia> bitstring(x)
"00111111101000000000000000000000"
julia> bitstring(nextfloat(x))
"00111111101000000000000000000001"
这个例子体现了一般原则,即相邻可表示的浮点数也有着相邻的二进制整数表示。