【刷题】滑动窗口入门

简介: 滑动窗口问题可以说是一种特殊的双指针问题

认识滑动窗口

滑动窗口问题可以说是一种特殊的双指针问题,通常用于解决以下类型的问题:

  1. 连续子数组或子字符串问题:例如,找出一个数组中连续元素和最大或最小的子数组,或者在字符串中找到一个包含特定字符的最短子字符串。
  2. 固定窗口大小问题:当窗口大小固定时,我们可以通过移动窗口来遍历整个数组或字符串,并记录所需的统计信息。
  3. 可变窗口大小问题:在某些情况下,窗口的大小可能会根据特定条件而变化。这需要我们在遍历过程中动态地调整窗口的大小。

滑动窗口算法的基本思想是使用双指针(有时也可能使用更多指针)来表示窗口的边界。在每一步中,我们可以根据特定条件来移动窗口的边界,并更新所需的统计信息。

看这些定义是真无法想象出来哦怎么个滑动窗口的,下面我们一起来做题吧:

Leetcode 209. 长度最小的子数组

题目描述

看这个题目还是很好理解的,只需要我们找到和大于target的连续子数组,我们来看第一个样例target = 7, nums = [2,3,1,2,4,3] 显然4,3是最小的子数组。接下来分析一下算法思路:

算法思路

根据题目要求,首先可以想到的是暴力枚举算法(遇事不决,暴力解决),遍历穷举出所有的连续子数组,寻找满足要求的子数组,最终就找到了最小的连续子数组:

class Solution {
public:
    int minSubArrayLen(int s, vector<int>& nums) {
      //暴力解法
        int n = nums.size();
        if (n == 0) {
            return 0;
        }
        //默认为最大值
        int ans = INT_MAX;
        //开始遍历
        for (int i = 0; i < n; i++) {
        //重置sum值
            int sum = 0;
            //判断子数组是否满足
            for (int j = i; j < n; j++) {
                sum += nums[j];
                if (sum >= s) {
                //满足就更新结果
                    ans = min(ans, j - i + 1);
                    break;
                }
            }
        }
        return ans == INT_MAX ? 0 : ans;
    }
};

这样暴力的算法的时间复杂度是O(n^2),我们看看可不可以进行优化:

来看图解(来着力扣官方)

这样就模拟了滑动窗口:

做法:将右端元素划⼊窗⼝中,统计出此时窗⼝内元素的和:

  • 如果窗⼝内元素之和⼤于等于 target :更新结果,并且将左端元素划出去的同时继续判
    断是否满⾜条件并更新结果(因为左端元素可能很⼩,划出去之后依旧满⾜条件)
  • 如果窗⼝内元素之和不满⾜条件: right++ ,另下⼀个元素进⼊窗⼝。
class Solution {
public:
    int minSubArrayLen(int target, vector<int>& nums) {
        int left = 0,right = 0;
        //设置为最大值 保证没有满足的子数组时可以判断
        int len = INT_MAX;
        int sum = 0;
        sum += nums[left];

        while(left < nums.size() && right < nums.size()){
      //
            if(sum < target ){
                right++;
                if(right < nums.size())
                    sum += nums[right];

            }
            while (sum >= target){
                len = min (right - left + 1 , len) ;
                sum -= nums[left];
                left++;
            }
        }
        return len == INT_MAX ? 0:len;
    }
};

这样大大提高了算法的效率!!!

为何滑动窗⼝可以解决问题,并且时间复杂度更低?

  1. 这个窗⼝寻找的是:以当前窗⼝最左侧元素(记为 left1 )为基准,符合条件的情况。也就是在这道题中,从 left1 开始,满⾜区间和 sum >= target 时的最右侧(记为right1 )能到哪⾥。
  2. 我们既然已经找到从 left1 开始的最优的区间,那么就可以⼤胆舍去 left1 。但是如果继续像⽅法⼀⼀样,重新开始统计第⼆个元素( left2 )往后的和,势必会有⼤量重复的计算(因为我们在求第⼀段区间的时候,已经算出很多元素的和了,这些和是可以在计算下次区间和的时候⽤上的)。
  3. 此时, rigth1 的作⽤就体现出来了,我们只需将 left1 这个值从sum 中剔除。从right1 这个元素开始,往后找满⾜ left2 元素的区间(此时right1 也有可能是满⾜的,因为 left1 可能很⼩。 sum 剔除掉 left1 之后,依旧满⾜⼤于等于target )。这样我们就能省掉⼤量重复的计算。

这样我们不仅能解决问题,⽽且效率也会⼤⼤提升

继续我们来看下一题

Leetcode 3. 无重复字符的最长子串

题目描述

描述也是十分简单奥,我们接着来看如何解决

算法思路

首先想到的还是暴力枚举啊,我们可以借助哈希表来确定是否重复。

枚举过程中就会发现左右指针移动方向相同,所以可以进行滑动窗口

  1. 入窗口(右指针移动)
  2. 判断(判断是否需要移动左指针)
  3. 出窗口
  4. 更新结果
class Solution {
public:

    int lengthOfLongestSubstring(string s) {
        int len = 0;
        int n = s.size();
        //使用哈希进行判断是否重复
        int hash[128] = {0};
        int ret = 0;
        for(int left = 0,right = 0; right < n; right++){
          //进入窗口
            hash[s[right]]++;
      //判断
            while(hash[s[right]] > 1){
              //出窗口
                hash[s[left]]--;
                left++;
                len--;
            }
          //更新结果
            len++;
            ret = max(len,ret);
        }
        return ret;

    }
};

这样就完美解决。

其实滑动窗口都是可以套用上面的模版的,不信?来看下一题

Leetcode 1004. 最大连续1的个数 III

题目描述

题目描述依然简单奥,只是判断条件发生了改变,我们需要来定义一个数字来比较是否满足少于k

算法思路

依旧是:

  1. 入窗口(右指针移动)
  2. 判断(判断是否需要移动左指针)
  3. 出窗口
  4. 更新结果
class Solution {
public:
    int longestOnes(vector<int>& nums, int k) {
        int tmp = 0,left = 0,right = 0,n = nums.size();
        int ret = 0;
        while(right < n){

            if(nums[right] == 0) {
                tmp++;    
            }

            while(tmp > k){
                if(nums[left] == 0) tmp--;
                left++;
            }

            ret = max(ret,right - left + 1);
            right++;
        }
        return ret;
    }
};

这样就成功完成解题!!!

总结

滑动窗口问题是可以通过模版来解决:

  1. 入窗口(右指针移动)
  2. 判断(按题分析判断是否需要移动左指针)
  3. 出窗口
  4. 更新结果

这样基本滑动窗口都可以解决,但重要的是理解滑动窗口的思路是如何得到的,是如何从暴力算法优化出来的。

送给大家一句话:

那脑袋里的智慧,就像打火石里的火花一样,不去打它是不肯出来的。——莎士比亚

Thanks♪(・ω・)ノ谢谢阅读!!!

下一篇文章见

相关文章
|
6月前
OJ刷题日记:3、滑动窗口(1)
OJ刷题日记:3、滑动窗口(1)
51 0
|
6月前
|
算法 搜索推荐 测试技术
【刷题】 滑动窗口进阶
这样的优化对于该题的提升是有限的,但是这是一种非常实用的算法,以后还会遇见哦!!!
33 0
|
6月前
|
算法 C++ 索引
OJ刷题日记:4、滑动窗口(2)
OJ刷题日记:4、滑动窗口(2)
60 0
|
6月前
蓝桥杯备战刷题-滑动窗口
蓝桥杯备战刷题-滑动窗口
40 0
|
6月前
|
算法
六六力扣刷题贪心算法之跳跃游戏
六六力扣刷题贪心算法之跳跃游戏
36 0
|
6月前
|
机器学习/深度学习 算法
六六力扣刷题双指针之三数之和
六六力扣刷题双指针之三数之和
58 0
|
6月前
剑指Offer LeetCode 面试题59 - I. 滑动窗口的最大
剑指Offer LeetCode 面试题59 - I. 滑动窗口的最大
36 0
|
12月前
|
算法
代码随想录算法训练营第十二天 | LeetCode 239. 滑动窗口最大值、LeetCode 347. 前 K 个高频元素
代码随想录算法训练营第十二天 | LeetCode 239. 滑动窗口最大值、LeetCode 347. 前 K 个高频元素
31 0
|
算法
LeetCode刷题系列(一)把回溯算法框架将给爷爷奶奶听(上)
LeetCode刷题系列(一)把回溯算法框架将给爷爷奶奶听(上)
|
机器学习/深度学习 算法
算法刷题第五天:双指针--4
链表的缺点在于不能通过下标访问对应的元素。因此我们可以考虑对链表进行遍历,同时将遍历到的元素依次放入数组A中。如果我们遍历到了N个素,那么链表以及数组的长度也为N,对应的中间节点即为A[N/2] 。
95 1
算法刷题第五天:双指针--4