【探索Linux】P.14(进程间通信 | 匿名管道 | |进程池 | pipe() 函数 | mkfifo() 函数)

简介: 【探索Linux】P.14(进程间通信 | 匿名管道 | |进程池 | pipe() 函数 | mkfifo() 函数)

引言

当今计算机系统中,进程间通信扮演着至关重要的角色。随着计算机系统的发展和复杂性的增加,多个进程之间的协作变得更加必要和常见。进程间通信使得不同进程能够共享资源、协调工作、传输数据,并实现更加复杂和强大的功能。本文将深入探讨进程间的通信,以及管道的作用。它为多个进程提供了一种有效的交互方式,使得系统能够更好地协同工作、共享资源,并实现更高级别的功能。通过恰当地选择和使用进程间通信的方式,我们可以构建出高效、可靠且高度协同的系统。下面话不多说坐稳扶好咱们要开车了😍

一、进程间通信概念

进程间通信(IPC)是操作系统中的一个重要概念,它允许不同的进程在执行过程中交换数据、共享资源、协调行为等。在多道程序设计环境下,多个进程可能需要相互通信以完成复杂的任务,而进程间通信提供了各种机制来实现这种交互


二、进程间通信目的

🍔进程间通信的主要目的包括:

  1. 数据交换:允许进程之间传递数据,比如传输文件、文本、图像等信息。
  2. 资源共享:多个进程可以访问和共享同一块内存区域,以便协同完成某项任务。
  3. 进程控制:允许一个进程控制另一个进程的行为,比如启动、暂停、终止等。
  4. 同步与互斥:确保多个进程能够按照特定的顺序执行,避免竞态条件和数据冲突。
  5. 通知事件:一个进程需要向另一个或一组进程发送消息,通知它(它们)发生了某种事件(如进程终止时要通知父进程)。

三、进程间通信分类

🍁以下是几种常见的进程间通信方式:

  1. 管道(Pipe):管道是一种半双工的通信方式,用于具有亲缘关系的进程间通信。它可以是匿名管道(使用pipe系统调用)或命名管道(使用mkfifo命令),并且数据只能在一个方向上流动。
  2. 信号(Signal):信号是一种异步的通信机制,用于通知进程发生了某种事件。进程可以向另一个进程发送信号,比如终止信号(SIGTERM)、中断信号(SIGINT)等。
  3. 消息队列(Message Queue):消息队列是一种消息传递机制,可以在不同进程之间按队列方式传递数据。它允许一个进程向另一个进程发送消息,而不需要直接的数据连接。
  4. 共享内存(Shared Memory):共享内存允许多个进程访问同一块物理内存,因此它是最快的 IPC 方式之一。但需要开发者自行解决竞争条件和同步的问题。
  5. 信号量(Semaphores):信号量是一种计数器,用于控制对共享资源的访问。它通常与共享内存一起使用,以避免多个进程同时访问共享内存时产生的竞争条件。
  6. 套接字(Socket):套接字是一种进程间通信的常见方式,可以用于不同主机之间的通信,也可以用于同一主机上不同进程之间的通信。

四、管道

1. 什么是管道

管道(Pipe)是一种在UNIX和类UNIX系统中用于进程间通信的机制。管道允许一个进程将其输出直接发送到另一个进程的输入,从而实现两个进程之间的数据传输

🍪管道的特点包括:

  • 管道是一种半双工的通信方式,数据只能在一个方向上流动
  • 管道通常用于实现父子进程之间的通信,例如一个进程的输出连接到另一个进程的输入,实现数据传递和处理。
  • 管道的数据是以先进先出(FIFO)的方式传输的,保持了数据的顺序性

2. 匿名管道

(1)创建和关闭

⭕pipe() 函数

在Linux系统中,pipe()函数用于创建匿名管道,它是一个系统调用函数,位于<unistd.h>头文件中。该函数创建一个管道,返回两个文件描述符,一个用于读取数据,另一个用于写入数据。

语法

#include <unistd.h>

int pipe(int pipefd[2]);

参数

  • pipefd: 一个整型数组,用于存储管道的文件描述符。pipefd[0]用于从管道中读取数据,pipefd[1]用于向管道中写入数据。

返回值

  • 若成功,返回值为0;若失败,返回值为-1,并设置errno来指示错误类型。
⭕创建匿名管道
  1. 使用pipe()系统调用来创建匿名管道。pipe()系统调用会创建一个管道,返回两个文件描述符,一个用于读取数据,另一个用于写入数据。
  2. 在Linux系统中,可以通过命令行工具或者编程语言来使用pipe()系统调用创建匿名管道。
  3. 以下是使用C语言创建匿名管道的示例代码:
#include <unistd.h>

int main() {
    int pipefd[2];
    if (pipe(pipefd) == -1) {
        // 处理创建失败的情况
    }
    // 现在pipefd[0]是用于读取的文件描述符,pipefd[1]是用于写入的文件描述符
}
⭕关闭匿名管道
  1. 匿名管道的关闭通常由操作系统自动处理,当所有指向管道的文件描述符都关闭时,操作系统会自动关闭管道。
  2. 在编程中,可以通过close()系统调用显式地关闭管道的读取端或写入端。
  3. 以下是使用C语言关闭匿名管道的示例代码:
#include <unistd.h>

int main() {
    int pipefd[2];
    if (pipe(pipefd) == -1) {
        // 处理创建失败的情况
    }
    // 在适当的时机关闭管道
    close(pipefd[0]); // 关闭读取端
    close(pipefd[1]); // 关闭写入端
}

(2)通信方式

父子进程之间的通信:父子进程可以通过匿名管道进行通信。通常的做法是在调用fork()之后,子进程继承了父进程的文件描述符,包括管道。子进程可以关闭不需要的文件描述符,然后使用write()函数向管道中写入数据,父进程则使用read()函数从管道中读取数据。

兄弟进程之间的通信:兄弟进程之间也可以通过匿名管道进行通信。通常的做法是在调用pipe()和fork()之后,子进程再次调用fork()创建兄弟进程。然后兄弟进程可以通过管道进行通信,一个进程负责写入,另一个进程负责读取。

(3)用法示例

  • 在Shell脚本中,可以使用管道将一个命令的输出传递给另一个命令进行处理,比如command1 | command2
  • 在C语言或其他编程语言中,可以通过创建管道来实现父子进程之间的通信,或者在多个兄弟进程之间进行数据交换(后面进程池会细讲示例)。

(4)匿名管道的特点

  1. 阻塞式读写:
  • 当管道读取端为空时,尝试从管道中读取数据的进程将会被阻塞,直到有数据可供读取为止。读取端的进程会等待直到管道中有数据可用,或者直到收到信号中断。
  • 当管道写入端已满时,尝试向管道中写入数据的进程将会被阻塞,直到有足够的空间可以写入为止。这个时候,写入端的进程会等待直到管道中有足够的空间,或者直到收到信号中断。
  1. 数据顺序性:
  • 匿名管道保证数据的顺序性,数据是以先进先出(FIFO)的方式传输的,从而保持了数据的顺序性。
  1. 局限性:
  • 匿名管道通常适用于具有亲缘关系的进程间通信,无法用于无亲缘关系的进程间通信
  • 匿名管道只能在本地进程间通信,无法用于远程通信。
  1. 单向通信:匿名管道是一种单向通信机制,数据只能在一个方向上传输。其中一个进程负责写入数据,而另一个进程负责读取数据。这使得匿名管道适用于一些特定的通信场景,如父子进程或者兄弟进程之间的通信。
  2. 半双工通信:匿名管道是半双工的,意味着它可以在两个进程之间进行双向通信,但是不能同时进行读和写操作。虽然它可以实现双向通信,但是在任意给定的时间点,数据只能在一个方向上传输。
  1. 自动关闭:当所有指向管道的文件描述符全部关闭时,操作系统会自动关闭管道。这样做可以确保在程序结束时释放资源,并且不会造成资源泄漏。

3. 运用匿名管道建立进程池

#include <iostream>
#include <vector>
#include <unistd.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <ctime>
#include <cstdlib>
#include <cassert>
#define PROCESS_NUM 5  // 定义常量 PROCESS_NUM 为 5

using namespace std;

// 从文件描述符 waitFd 中读取命令
int waitCommand(int waitFd, bool &quit) {
    uint32_t command = 0;
    ssize_t s = read(waitFd, &command, sizeof(command));  // 从文件描述符中读取命令
    if (s == 0) {  // 如果成功读取到命令
        quit = true;  // 标记为需要退出
        return -1;
    }
    assert(s == sizeof(uint32_t));  // 断言读取的字节数与命令长度相等
    return command;  // 返回读取到的命令
}

// 向指定的进程发送命令,并在标准输出中打印相关信息
void sendAndWakeup(pid_t who, int fd, uint32_t command) {
    write(fd, &command, sizeof(command));  // 向文件描述符中写入命令
    cout << "main process: call process " << who << " execute " << desc[command] << " through " << fd << endl;  // 打印相关信息
}

int main()
{
    load(); // 加载一些内容

    vector<pair<pid_t, int>> slots; // 用于保存子进程的PID和管道写端文件描述符

    // 先创建多个进程
    for (int i = 0; i < PROCESS_NUM; i++)
    {
        int pipefd[2] = {0};
        assert(pipe(pipefd) == 0); // 创建管道并检查是否成功

        pid_t id = fork();
        assert(id != -1); // 检查fork()是否成功

        if (id == 0) // 子进程逻辑
        {
            close(pipefd[1]); // 关闭写端
            while (true)
            {
                bool quit = false;
                int command = waitCommand(pipefd[0], quit); // 等待命令
                if (quit)
                    break; // 如果收到退出命令,则退出循环
                if (command >= 0 && command < handlerSize())
                {
                    dummyHandler(); // 执行对应的命令处理函数
                }
                else
                {
                    cout << "非法command: " << command << endl;
                }
            }
            exit(1);
        }
        else // 父进程逻辑
        {
            close(pipefd[0]); // 关闭子进程的读端
            slots.push_back(pair<pid_t, int>(id, pipefd[1])); // 保存子进程的PID和写端管道文件描述符
        }
    }

    // 父进程派发任务
    srand((unsigned long)time(nullptr) ^ getpid() ^ 23323123123L); // 设置随机数种子
    while (true)
    {
        int command = rand() % handlerSize(); // 随机选择一个任务
        int choice = rand() % slots.size(); // 随机选择一个子进程
        sendAndWakeup(slots[choice].first, slots[choice].second, command); // 向选定的子进程发送任务
        sleep(1); // 休眠一秒
    }

    // 关闭fd, 所有的子进程都会退出
    for (const auto &slot : slots)
    {
        close(slot.second); // 关闭所有子进程的写端
    }

    // 回收所有的子进程信息
    for (const auto &slot : slots)
    {
        waitpid(slot.first, nullptr, 0); // 回收子进程
    }
}

这段代码是一个简单的进程调度和通信示例,它创建了多个子进程,并使用管道进行进程间通信,父进程通过随机选择一个子进程来派发任务。

创建多个子进程:

  • 使用 fork() 函数创建子进程,并使用 pipe() 函数创建管道用于进程间通信。
  • 父进程将每个子进程的 PID 和写端管道文件描述符保存在 slots 向量中。

子进程逻辑:

  • 子进程关闭写端,然后进入一个无限循环,不断等待命令并执行。
  • 当收到命令时,执行对应的命令处理函数,如果收到退出命令则退出循环并终止子进程。

父进程逻辑:

  • 通过 srand() 来初始化随机数种子,使得每次运行产生的随机数不同。
  • 进入一个无限循环,随机选择一个任务和一个子进程,然后将任务发送给选定的子进程。
  • 每次发送完任务后,休眠一秒钟。

最后,父进程关闭所有子进程的写端,然后回收所有子进程的信息。

4. 命名管道

(1)创建和关闭

⭕mkfifo() 函数

mkfifo() 函数用于创建一个FIFO(First In First Out)或者称为命名管道,它允许进程之间进行通信。下面是关于 mkfifo() 函数的详细介绍:

函数原型

#include <sys/types.h>
#include <sys/stat.h>

int mkfifo(const char *pathname, mode_t mode);

参数

  • pathname:要创建的命名管道的路径名。
  • mode:创建命名管道时设置的权限模式,通常以 8 进制表示,比如 0666

返回值

若成功,返回值为 0;若失败,返回值为 -1,并设置errno来指示错误类型。

功能

mkfifo() 函数的作用是在文件系统中创建一个特殊类型的文件,该文件在外观上类似于普通文件,但实际上是一个FIFO,用于进程之间的通信。这种通信方式是单向的,即数据写入FIFO的一端,可以从另一端读取出来,按照先进先出的顺序。

⭕创建命名管道
  1. 包含头文件:首先需要包含相关的头文件,以便使用相关函数和数据结构。
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>

调用 mkfifo() 函数:使用 mkfifo() 函数创建命名管道。该函数原型如下:

int mkfifo(const char *pathname, mode_t mode);
  • pathname:要创建的命名管道的路径名。
  • mode:创建命名管道时设置的权限模式,通常以 8 进制表示,比如 0666

示例代码:

std::string fifoPath = "/tmp/my_named_pipe";  // 命名管道的路径名
mkfifo(fifoPath.c_str(), 0666); // 创建权限为0666的命名管道
  1. 处理返回值:检查 mkfifo() 的返回值,若返回 0 表示成功创建,若返回 -1 表示创建失败,并通过 errno 来获取具体的错误信息。

🚨注意事项

  • 路径名:确保要创建的命名管道路径名合法且没有重复。
  • 权限模式:根据实际需求设置合适的权限模式,确保可被需要访问该管道的进程所访问。
  • 错误处理:对 mkfifo() 函数的返回值进行适当的错误处理,根据具体的错误原因进行相应的处理和日志记录。
  1. 示例
    下面是一个简单的创建命名管道并处理错误的示例:
#include <iostream>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <cerrno>

int main() {
    std::string fifoPath = "/tmp/my_named_pipe";  // 命名管道的路径名

    if (mkfifo(fifoPath.c_str(), 0666) == -1) {
        if (errno == EEXIST) {
            std::cerr << "Named pipe already exists" << std::endl;
        } else {
            perror("Error creating named pipe");
        }
    } else {
        std::cout << "Named pipe created successfully" << std::endl;
    }

    return 0;
}

🔴 使用命名管道进行读写操作:在打开命名管道后,可以通过 read()write() 函数对其进行读写操作。

⭕关闭命名管道

关闭命名管道:当进程使用完毕命名管道后,需要调用 close() 函数来关闭文件描述符,释放相关资源。

close(fd);  // 关闭命名管道
  1. 注意事项
  • 关闭顺序:如果有多个文件描述符指向同一个命名管道,需要依次关闭这些文件描述符,直到所有相关资源都得到释放。
  1. 示例
    下面是一个简单的示例,演示了关闭命名管道的过程:
#include <iostream>
#include <fcntl.h>
#include <unistd.h>
#include <cerrno>

int main() {
    int fd = open("/tmp/my_named_pipe", O_RDONLY);  // 以只读方式打开命名管道

    // 进行读取操作...

    if (close(fd) == -1) {
        perror("Error closing named pipe");
    } else {
        std::cout << "Named pipe closed successfully" << std::endl;
    }

    return 0;
}

总之,关闭命名管道是确保在进程使用完毕后释放相关资源的重要步骤。通过调用 close() 函数可以关闭文件描述符,释放命名管道相关的资源。

(2)通信方式

  1. 单向通信
  2. 命名管道提供了一种单向通信的方式,一个进程可以向管道中写入数据,而另一个进程则可以从管道中读取数据。这种通信方式适用于需要单向数据传输的场景。
  3. 持久性
  4. 命名管道与匿名管道不同之处在于,它以文件的形式存在于文件系统中,具有持久性。即使管道的创建进程终止,命名管道仍然存在,其他进程可以继续使用该管道进行通信。
  5. 阻塞和非阻塞

在进行命名管道通信时,可以选择阻塞或非阻塞模式。在阻塞模式下,如果读取进程尝试从空管道中读取数据,它将被阻塞直到有数据可读;而在非阻塞模式下,读取进程将立即返回一个错误,从而避免阻塞。

(3)用法示例

下面是一个简单的示例,演示了两个进程通过命名管道进行通信的方式:

进程 A 写入数据到命名管道

int fd = open("/tmp/my_named_pipe", O_WRONLY);  // 以只写方式打开命名管道
write(fd, "Hello, named pipe!", 18);  // 向管道中写入数据
close(fd);  // 关闭命名管道

进程 B 从命名管道读取数据

int fd = open("/tmp/my_named_pipe", O_RDONLY);  // 以只读方式打开命名管道
char buffer[50];
read(fd, buffer, 50);  // 从管道中读取数据
close(fd);  // 关闭命名管道

(4)命名管道的特点

  1. 持久性:命名管道以文件的形式存在于文件系统中,并且具有持久性。即使创建了命名管道的进程终止,该管道仍然存在于文件系统中,其他进程可以继续使用它进行通信。
  2. 单向通信:命名管道提供单向通信的能力,允许一个进程向管道中写入数据,而另一个进程则可以从管道中读取数据。这种单向通信模式适用于需要单向数据传输的场景。
  3. 实时数据传输:命名管道允许实时的数据传输,写入管道的数据会立即被读取进程获取,从而实现了实时通信的能力。
  4. 阻塞和非阻塞模式:对于读取和写入操作,命名管道可以选择阻塞或非阻塞模式。在阻塞模式下,读取进程将被阻塞直到有数据可读,而在非阻塞模式下,读取进程将立即返回错误,避免阻塞。
  5. 简单易用:使用命名管道进行进程间通信相对简单,只需通过类似文件操作的方式打开、读取和关闭管道即可完成通信过程。
  6. 适用范围广泛:命名管道适用于各种场景,例如实现多个进程之间的数据共享、进程之间的控制和协调等。

5. 匿名管道与命名管道的区别

匿名管道和命名管道分别适用于不同的通信需求。

匿名管道适用于有亲缘关系的父子进程间的通信。

命名管道更适合不相关进程间的通信,且具有持久性和更灵活的应用方式。

1. 匿名管道:

  • 单向通信:匿名管道只能支持单向通信,即数据只能从一个进程流向另一个进程,无法实现双向通信。
  • 存在于内存中:匿名管道存在于内存中,并且只能用于相关进程之间的通信。一旦相关进程终止,管道也会自动被销毁。
  • 只能用于父子进程间通信:匿名管道通常用于父子进程之间的通信,因为它要求通信的进程具有一定的亲缘关系。
  • 通常用于shell命令间的通信:在Unix/Linux系统中,匿名管道经常用于将一个命令的输出传递给另一个命令作为输入。

2. 命名管道:

  • 持久性:命名管道以文件的形式存在于文件系统中,具有持久性,即使创建管道的进程终止,管道依然存在,其他进程也可以访问和使用它。
  • 可用于不相关的进程通信:命名管道可以用于不相关的进程之间的通信,这些进程可以位于不同的终端或主机上。
  • 支持阻塞和非阻塞模式:命名管道可以选择阻塞或非阻塞模式进行读写操作。
  • 适用于多种场景:命名管道适用于需要不相关进程之间进行通信的各种场景,例如进程之间的数据共享、控制和协调等。

温馨提示

感谢您对博主文章的关注与支持!如果您喜欢这篇文章,可以点赞、评论和分享给您的同学,这将对我提供巨大的鼓励和支持。另外,我计划在未来的更新中持续探讨与本文相关的内容。我会为您带来更多关于Linux以及C++编程技术问题的深入解析、应用案例和趣味玩法等。如果感兴趣的话可以关注博主的更新,不要错过任何精彩内容!

再次感谢您的支持和关注。我们期待与您建立更紧密的互动,共同探索Linux、C++、算法和编程的奥秘。祝您生活愉快,排便顺畅!

目录
相关文章
|
1月前
|
存储 负载均衡 Linux
【Linux 系统】进程间通信(匿名管道 & 命名管道)-- 详解(下)
【Linux 系统】进程间通信(匿名管道 & 命名管道)-- 详解(下)
|
2天前
|
存储 安全 Linux
Linux命令mkfifo深度解析
`mkfifo`在Linux中创建命名管道,用于进程间通信(IPC)。管道是临时的,非持久存储,作为数据传输的通道。特点是无缓冲、支持阻塞/非阻塞模式和权限控制。命令语法:`mkfifo -m &lt;权限&gt; 文件名`。示例:创建`mypipe`,一个进程写入,另一进程读取。注意选择阻塞模式、管理权限、删除不再使用的管道,并处理可能的错误。用于数据交换和高效能应用。
|
16天前
|
Linux C++
Linux C/C++ main函数
Linux C/C++ main函数
|
1月前
|
存储 Linux 数据安全/隐私保护
Linux进程间通信
Linux进程间通信
33 6
|
12天前
|
运维 JavaScript Serverless
Serverless 应用引擎产品使用合集之函数计算里中FC出现函数还没有执行完进程就关闭了是什么导致的
阿里云Serverless 应用引擎(SAE)提供了完整的微服务应用生命周期管理能力,包括应用部署、服务治理、开发运维、资源管理等功能,并通过扩展功能支持多环境管理、API Gateway、事件驱动等高级应用场景,帮助企业快速构建、部署、运维和扩展微服务架构,实现Serverless化的应用部署与运维模式。以下是对SAE产品使用合集的概述,包括应用管理、服务治理、开发运维、资源管理等方面。
|
1月前
|
消息中间件 存储 安全
【Linux 系统】进程间通信(共享内存、消息队列、信号量)(下)
【Linux 系统】进程间通信(共享内存、消息队列、信号量)(下)
|
1月前
|
消息中间件 算法 Linux
【Linux 系统】进程间通信(共享内存、消息队列、信号量)(上)
【Linux 系统】进程间通信(共享内存、消息队列、信号量)(上)
|
关系型数据库 MySQL Shell
系统管理-Linux重定向与管道
系统管理-Linux重定向与管道
100 0
系统管理-Linux重定向与管道
|
1天前
|
监控 Linux 数据处理
探索Linux中的`mountpoint`命令
`mountpoint`命令在Linux中用于检测目录是否为挂载点,关键在于检查`/etc/mtab`或`/proc/mounts`。简单易用,高效且无额外依赖。例如,用`mountpoint -q /mnt/data`判断挂载点,并结合`find`列出所有挂载点。在脚本中注意检查返回值,可能需`sudo`提升权限。可与其他命令组合以扩展功能。
|
15小时前
|
Linux C语言 C++
Linux 下centos 查看 -std这个编译时命令 是否支持 C17
Linux 下centos 查看 -std这个编译时命令 是否支持 C17
7 2

热门文章

最新文章