算法可以发掘本质,如:
一,若干师傅和徒弟互有好感,有好感的师徒可以结对学习。师傅和徒弟都只能参加一个对子。如何让对子最多。
二,有无限多1X2和2X1的骨牌,某个棋盘若干格子坏了,如何在没有坏的格子放足够多骨牌。
三,某个单色图,1表示前前景,0表示后景色。每次操作可以将一个1,变成0。如何在最少得操作情况下,使得没有两个1相邻(四连通)。
四,若干路人,有些人是熟人,如何选出最多的人参加实验。为了避免熟人影响实验的效果,参加的人不能是熟人。
一二是二分图的最大匹配,三是二分图的最小点覆盖,四是二分图最大独立集。 而这三者是等效问题。
本文涉及知识点
并集查找 图论 位运算
LeetCode3108. 带权图里旅途的最小代价
给你一个 n 个节点的带权无向图,节点编号为 0 到 n - 1 。
给你一个整数 n 和一个数组 edges ,其中 edges[i] = [ui, vi, wi] 表示节点 ui 和 vi 之间有一条权值为 wi 的无向边。
在图中,一趟旅途包含一系列节点和边。旅途开始和结束点都是图中的节点,且图中存在连接旅途中相邻节点的边。注意,一趟旅途可能访问同一条边或者同一个节点多次。
如果旅途开始于节点 u ,结束于节点 v ,我们定义这一趟旅途的 代价 是经过的边权按位与 AND 的结果。换句话说,如果经过的边对应的边权为 w0, w1, w2, …, wk ,那么代价为w0 & w1 & w2 & … & wk ,其中 & 表示按位与 AND 操作。
给你一个二维数组 query ,其中 query[i] = [si, ti] 。对于每一个查询,你需要找出从节点开始 si ,在节点 ti 处结束的旅途的最小代价。如果不存在这样的旅途,答案为 -1 。
返回数组 answer ,其中 answer[i] 表示对于查询 i 的 最小 旅途代价。
示例 1:
输入:n = 5, edges = [[0,1,7],[1,3,7],[1,2,1]], query = [[0,3],[3,4]]
输出:[1,-1]
解释:
第一个查询想要得到代价为 1 的旅途,我们依次访问:0->1(边权为 7 )1->2 (边权为 1 )2->1(边权为 1 )1->3 (边权为 7 )。
第二个查询中,无法从节点 3 到节点 4 ,所以答案为 -1 。
示例 2:
输入:n = 3, edges = [[0,2,7],[0,1,15],[1,2,6],[1,2,1]], query = [[1,2]]
输出:[0]
解释:
第一个查询想要得到代价为 0 的旅途,我们依次访问:1->2(边权为 1 ),2->1(边权 为 6 ),1->2(边权为 1 )。
提示:
1 <= n <= 105 0 <= edges.length <= 105 edges[i].length == 3 0 <= ui, vi <= n - 1 ui != vi 0 <= wi <= 105 1 <= query.length <= 105 query[i].length == 2 0 <= si, ti <= n - 1
并集查找
两个数位与不会变大,只会不变或变小。要想旅途代价最小就要尽可能的多进过边,把能经过的边全部经过一遍。也就是连通区域所有的边。
vMin[node] 是经过node所有边的位与和。
vGroupMin[iGroup]是本连通区域所有边的位与和。
代码
核心代码
class CUnionFind { public: CUnionFind(int iSize) :m_vNodeToRegion(iSize) { for (int i = 0; i < iSize; i++) { m_vNodeToRegion[i] = i; } m_iConnetRegionCount = iSize; } CUnionFind(vector<vector<int>>& vNeiBo):CUnionFind(vNeiBo.size()) { for (int i = 0; i < vNeiBo.size(); i++) { for (const auto& n : vNeiBo[i]) { Union(i, n); } } } int GetConnectRegionIndex(int iNode) { int& iConnectNO = m_vNodeToRegion[iNode]; if (iNode == iConnectNO) { return iNode; } return iConnectNO = GetConnectRegionIndex(iConnectNO); } void Union(int iNode1, int iNode2) { const int iConnectNO1 = GetConnectRegionIndex(iNode1); const int iConnectNO2 = GetConnectRegionIndex(iNode2); if (iConnectNO1 == iConnectNO2) { return; } m_iConnetRegionCount--; if (iConnectNO1 > iConnectNO2) { UnionConnect(iConnectNO1, iConnectNO2); } else { UnionConnect(iConnectNO2, iConnectNO1); } } bool IsConnect(int iNode1, int iNode2) { return GetConnectRegionIndex(iNode1) == GetConnectRegionIndex(iNode2); } int GetConnetRegionCount()const { return m_iConnetRegionCount; } vector<int> GetNodeCountOfRegion()//各联通区域的节点数量 { const int iNodeSize = m_vNodeToRegion.size(); vector<int> vRet(iNodeSize); for (int i = 0; i < iNodeSize; i++) { vRet[GetConnectRegionIndex(i)]++; } return vRet; } std::unordered_map<int, vector<int>> GetNodeOfRegion() { std::unordered_map<int, vector<int>> ret; const int iNodeSize = m_vNodeToRegion.size(); for (int i = 0; i < iNodeSize; i++) { ret[GetConnectRegionIndex(i)].emplace_back(i); } return ret; } private: void UnionConnect(int iFrom, int iTo) { m_vNodeToRegion[iFrom] = iTo; } vector<int> m_vNodeToRegion;//各点所在联通区域的索引,本联通区域任意一点的索引,为了增加可理解性,用最小索引 int m_iConnetRegionCount; }; class Solution { public: vector<int> minimumCost(int n, vector<vector<int>>& edges, vector<vector<int>>& query) { CUnionFind uf(n); vector<int> vMin(n,(1<<20)-1); for (const auto& v : edges) { uf.Union(v[0], v[1]); vMin[v[0]] &= v[2]; vMin[v[1]] &= v[2]; } auto m = uf.GetNodeOfRegion(); vector<int> vGroupMin = vMin; for (const auto& [group, v] : m) { for (const auto& node : v) { vGroupMin[group] &= vMin[node]; } } vector<int> vRet; for (const auto& v : query) { if (uf.IsConnect(v[0], v[1])) { const int iGroup = uf.GetConnectRegionIndex(v[0]); vRet.emplace_back(vGroupMin[iGroup]); } else { vRet.emplace_back(-1); } } return vRet; } };
扩展阅读
视频课程
有效学习:明确的目标 及时的反馈 拉伸区(难度合适),可以先学简单的课程,请移步CSDN学院,听白银讲师(也就是鄙人)的讲解。
https://edu.csdn.net/course/detail/38771
如何你想快速形成战斗了,为老板分忧,请学习C#入职培训、C++入职培训等课程
https://edu.csdn.net/lecturer/6176
相关下载
想高屋建瓴的学习算法,请下载《喜缺全书算法册》doc版
https://download.csdn.net/download/he_zhidan/88348653
我想对大家说的话 |
闻缺陷则喜是一个美好的愿望,早发现问题,早修改问题,给老板节约钱。 |
子墨子言之:事无终始,无务多业。也就是我们常说的专业的人做专业的事。 |
如果程序是一条龙,那算法就是他的是睛 |
测试环境
操作系统:win7 开发环境: VS2019 C++17
或者 操作系统:win10 开发环境: VS2022 C++17
如无特殊说明,本算法用**C++**实现。