论文介绍:LLMLingua-2——面向高效忠实任务无关性提示压缩的数据蒸馏方法

简介: 【5月更文挑战第2天】LLMLingua-2是一种针对大型语言模型(LLMs)的数据蒸馏方法,旨在实现高效且忠实的提示压缩。通过从LLMs中提取知识,该方法在压缩提示的同时保持关键信息,提高模型泛化能力和效率。采用Transformer编码器,LLMLingua-2将提示压缩转化为标记分类问题,确保压缩后的提示忠实度并减少延迟。实验表明,该方法在多个数据集上优于基线,并在压缩延迟上取得显著改进,但也存在泛化能力和扩展性限制。论文链接:https://arxiv.org/abs/2403.12968

在人工智能领域,大型语言模型(LLMs)的高效运用一直是研究的热点。随着技术的不断进步,LLMs在处理复杂任务时展现出了强大的能力,但同时也面临着计算成本高和信息处理效率低的问题。为了解决这些问题,研究者们提出了一种新的方法——LLMLingua-2,这是一种面向高效忠实任务无关性提示压缩的数据蒸馏方法。

LLMLingua-2的核心思想是通过对大型语言模型中的提示进行压缩,以提高模型的泛化能力和效率。在自然语言处理中,提示的压缩是一个重要环节,它能够帮助模型更快地理解和处理信息。然而,传统的压缩方法往往依赖于信息熵等经验性指标,这可能导致压缩后的提示丢失关键信息。LLMLingua-2通过数据蒸馏过程,从LLM中提取知识,有效压缩提示的同时保留了关键信息,这一点在实践中显示出了显著的优势。

LLMLingua-2的另一个创新之处在于,它将提示压缩问题视为一个标记分类问题,通过使用Transformer编码器作为基础架构,能够从完整的双向上下文中捕获所有关键信息。这种方法不仅提高了压缩后提示的忠实度,也显著降低了模型的延迟,使得LLMs能够更快速地响应和处理信息。

在实验部分,LLMLingua-2在多个数据集上进行了测试,包括LongBench、ZeroSCROLLS、GSM8K和Big Bench Hard等。实验结果显示,LLMLingua-2在不同基线上都展现出了优越的性能,并且在压缩延迟方面实现了显著的改进。这些实验结果证明了LLMLingua-2在不同任务和领域上的泛化能力,以及其在提高LLMs效率方面的潜力。

尽管LLMLingua-2在多个方面都取得了显著的成果,但它也存在一些局限性。首先,LLMLingua-2的数据集构建主要依赖于来自MeetingBank的训练示例,这可能会影响其在其他领域的泛化能力。虽然研究者通过在其他基准测试上的评估来证明其泛化能力,但这仍然是一个值得进一步研究的问题。其次,LLMLingua-2在扩展数据集后的性能提升并不显著,这表明虽然模型能够从更多数据中学习,但可能已经接近其性能的极限。

论文地址:https://arxiv.org/abs/2403.12968

目录
相关文章
|
存储 自然语言处理 API
【网安AIGC专题11.1】12 CODEIE用于NER和RE:顶刊OpenAI API调用、CodeX比chatgpt更好:提示工程设计+控制变量对比实验(格式一致性、模型忠实度、细粒度性能)(下)
【网安AIGC专题11.1】12 CODEIE用于NER和RE:顶刊OpenAI API调用、CodeX比chatgpt更好:提示工程设计+控制变量对比实验(格式一致性、模型忠实度、细粒度性能)
108 0
|
27天前
|
机器学习/深度学习 自然语言处理 算法
通过RAG增强大模型回答原本无法回答的问题
RAG(检索增强生成)是一种结合信息检索和文本生成技术的方法,旨在提升大规模语言模型处理特定问题的能力。通过先从大量文档中检索相关信息,再利用这些信息生成更准确的答案,RAG特别适用于需要最新数据或专业知识的场景,如医疗咨询、法律建议等。此方法不仅提高了答案的质量和准确性,还增强了系统的可扩展性和适应性。随着技术进步,RAG有望在更多领域发挥重要作用。
|
26天前
|
人工智能 人机交互 智能硬件
从大模型的原理到提示词优化
本文介绍了大语言模型(LLM)的基本概念及其工作原理,重点探讨了AI提示词(Prompt)的重要性和几种有效技巧,包括角色设定、One-shot/Few-shot、任务拆解和思维链。通过实例解析,展示了如何利用这些技巧提升LLM的输出质量和准确性,强调了提供高质量上下文信息对优化LLM表现的关键作用。
43 0
|
3月前
|
存储 并行计算
小技巧大功效,仅阅读两次提示让循环语言模型超越Transformer++
【8月更文挑战第27天】斯坦福与布法罗大学的研究显示,通过"Just-Read-Twice"(JRT)策略,循环语言模型(RNNs)在多项任务上的表现超越了行业标杆Transformer++模型。JRT策略让RNNs在处理信息时进行两次读取,有效解决长上下文记忆难题,显著提升了性能。实验覆盖FDA、SQUAD等多个任务,均取得明显成效。论文已发布于arXiv。
26 2
|
5月前
|
机器学习/深度学习 监控
【机器学习】基于扩散模型的文本到音频生成:突破数据局限,优化音频概念与实践顺序
【机器学习】基于扩散模型的文本到音频生成:突破数据局限,优化音频概念与实践顺序
170 0
|
6月前
|
机器学习/深度学习 人工智能 自然语言处理
让大模型不再巨无霸,这是一份最新的大模型参数高效微调综述
【5月更文挑战第12天】最新综述探讨了大模型参数高效微调,旨在减少计算成本、增强泛化能力和灵活性。方法包括Additive、Selective、Reparameterized和Hybrid PEFT,已应用于NLP、CV和多模态学习。尽管取得进展,仍需解决泛化、效率和可解释性问题。未来研究将关注多任务学习、强化学习和神经架构搜索。论文链接:https://arxiv.org/pdf/2403.14608.pdf
351 2
|
存储 Java API
【网安AIGC专题11.7】17ASAP如何更好地改进少样本提示:在LLMs的prompt中添加语义信息,来提高代码摘要生成+代码补全任务的性能。CodeSearchNet数据集(下)
【网安AIGC专题11.7】17ASAP如何更好地改进少样本提示:在LLMs的prompt中添加语义信息,来提高代码摘要生成+代码补全任务的性能。CodeSearchNet数据集(下)
148 0
|
6月前
|
机器学习/深度学习 计算机视觉 网络架构
【FCN】端到端式语义分割的开篇之作! 从中窥探后续语义分割网络的核心模块(一)
【FCN】端到端式语义分割的开篇之作! 从中窥探后续语义分割网络的核心模块(一)
405 0
【FCN】端到端式语义分割的开篇之作! 从中窥探后续语义分割网络的核心模块(一)
|
存储 自然语言处理 Apache
【网安AIGC专题11.7】17ASAP如何更好地改进少样本提示:在LLMs的prompt中添加语义信息,来提高代码摘要生成+代码补全任务的性能。CodeSearchNet数据集(上)
【网安AIGC专题11.7】17ASAP如何更好地改进少样本提示:在LLMs的prompt中添加语义信息,来提高代码摘要生成+代码补全任务的性能。CodeSearchNet数据集(上)
124 1
|
机器学习/深度学习 自然语言处理 算法
【网安AIGC专题10.25】论文7:Chatgpt/CodeX引入会话式 APR 范例+利用验证反馈+LLM 长期上下文窗口:更智能的反馈机制、更有效的信息合并策略、更复杂的模型结构、鼓励生成多样性
【网安AIGC专题10.25】论文7:Chatgpt/CodeX引入会话式 APR 范例+利用验证反馈+LLM 长期上下文窗口:更智能的反馈机制、更有效的信息合并策略、更复杂的模型结构、鼓励生成多样性
142 0