【视频】什么是非线性模型与R语言多项式回归、局部平滑样条、 广义相加GAM分析工资数据|数据分享(下)

简介: 【视频】什么是非线性模型与R语言多项式回归、局部平滑样条、 广义相加GAM分析工资数据|数据分享

【视频】什么是非线性模型与R语言多项式回归、局部平滑样条、 广义相加GAM分析工资数据|数据分享(上):https://developer.aliyun.com/article/1492364


广义加性模型


GAM模型提供了一个通用框架,可通过允许每个变量的非线性函数扩展线性模型,同时保持可加性。

具有平滑样条的GAM并不是那么简单,因为不能使用最小二乘。取而代之的 是使用一种称为_反向拟合_的方法  。


GAM的优缺点


优点

  • GAM允许将非线性函数拟合到每个预测变量,以便我们可以自动对标准线性回归会遗漏的非线性关系进行建模。我们不需要对每个变量分别尝试许多不同的转换。
  • 非线性拟合可以潜在地对因变量_Y_做出更准确的预测  。
  • 因为模型是可加的,所以我们仍然可以检查每个预测变量对_Y_的影响,   同时保持其他变量不变。

缺点

  • 主要局限性在于该模型仅限于累加模型,因此可能会错过重要的交互作用。


范例


多项式回归和分段函数

1.  library(ISLR)
    
2.  attach(Wage)

我们可以轻松地使用来拟合多项式函数,然后指定多项式的变量和次数。该函数返回正交多项式的矩阵,这意味着每列是变量的变量的线性组合  age,  age^2,  age^3,和  age^4。如果要直接获取变量,可以指定  raw=TRUE,但这不会影响预测结果。它可用于检查所需的系数估计。

1.  fit = lm(wage~poly(age, 4), data=Wage)
    
2.  kable(coef(summary(fit)))

现在让我们创建一个ages 我们要预测的向量。最后,我们将要绘制数据和拟合的4次多项式。

1.  ageLims <- range(age)
    
2.  age.grid <- seq(from=ageLims[1], to=ageLims[2])
    
4.  pred <- predict(fit, newdata = list(age = age.grid),
    
5.                  se=TRUE)
1.  plot(age,wage,xlim=ageLims ,cex=.5,col="darkgrey")
    
2.   lines(age.grid,pred$fit,lwd=2,col="blue")
    
3.  matlines(age.grid,se.bands,lwd=2,col="blue",lty=3)

在这个简单的示例中,我们可以使用ANOVA检验 。

2.  ## Analysis of Variance Table
    
3.  ## 
    
4.  ## Model 1: wage ~ age
    
5.  ## Model 2: wage ~ poly(age, 2)
    
6.  ## Model 3: wage ~ poly(age, 3)
    
7.  ## Model 4: wage ~ poly(age, 4)
    
8.  ## Model 5: wage ~ poly(age, 5)
    
9.  ##   Res.Df     RSS Df Sum of Sq      F Pr(>F) 
    
10.  ## 1   2998 5022216 
    
11.  ## 2   2997 4793430  1    228786 143.59 <2e-16 ***
    
12.  ## 3   2996 4777674  1     15756   9.89 0.0017 ** 
    
13.  ## 4   2995 4771604  1      6070   3.81 0.0510 . 
    
14.  ## 5   2994 4770322  1      1283   0.80 0.3697 
    
15.  ## ---
    
16.  ## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

我们看到,_M_1 与二次模型  相比,p值  _M_2 实质上为零,这表明线性拟合是不够的。因此,我们可以得出结论,二次方或三次模型可能更适合于此数据,并且偏向于简单模型。

我们也可以使用交叉验证来选择多项式次数。

在这里,我们实际上看到的最小交叉验证误差是针对4次多项式的,但是选择3次或2次模型并不会造成太大损失。接下来,我们考虑预测个人是否每年收入超过25万。

但是,概率的置信区间是不合理的,因为我们最终得到了一些负概率。为了生成置信区间,更有意义的是转换对  _数_  预测。

绘制:

1.  plot(age,I(wage>250),xlim=ageLims ,type="n",ylim=c(0,.2))
    
2.  lines(age.grid,pfit,lwd=2, col="blue")
    
3.  matlines(age.grid,se.bands,lwd=1,col="blue",lty=3)

逐步回归函数


在这里,我们需要拆分数据。

table(cut(age, 4))
1.  ## 
    
2.  ## (17.9,33.5]   (33.5,49]   (49,64.5] (64.5,80.1] 
    
3.  ##         750        1399         779          72
1.  fit <- lm(wage~cut(age, 4), data=Wage)
    
2.  coef(summary(fit))
1.  ##                        Estimate Std. Error t value  Pr(>|t|)
    
2.  ## (Intercept)              94.158      1.476  63.790 0.000e+00
    
3.  ## cut(age, 4)(33.5,49]     24.053      1.829  13.148 1.982e-38
    
4.  ## cut(age, 4)(49,64.5]     23.665      2.068  11.443 1.041e-29
    
5.  ## cut(age, 4)(64.5,80.1]    7.641      4.987   1.532 1.256e-01

splines 样条函数

在这里,我们将使用三次样条。

由于我们使用的是三个结的三次样条,因此生成的样条具有六个基函数。

2.  ## [1] 3000    6
    
3.  dim(bs(age, df=6))
    
5.  ## [1] 3000    6
    
6.  ##   25%   50%   75% 
    
7.  ## 33.75 42.00 51.00

拟合样条曲线。

我们也可以拟合平滑样条。在这里,我们拟合具有16个自由度的样条曲线,然后通过交叉验证选择样条曲线,从而产生6.8个自由度。

2.  fit2$df
    
4.  ## [1] 6.795
    
5.  lines(fit, col='red', lwd=2)
    
6.  lines(fit2, col='blue', lwd=1)
    
7.  legend('topright', legend=c('16 DF', '6.8 DF'),
    
8.         col=c('red','blue'), lty=1, lwd=2, cex=0.8)

局部回归

执行局部回归。

GAMs

现在,我们使用GAM通过年份,年龄和受教育程度的样条来预测工资。由于这只是具有多个基本函数的线性回归模型,因此我们仅使用  lm() 函数。

为了拟合更复杂的样条曲线 ,我们需要使用平滑样条曲线。

绘制这两个模型

year 是线性的。我们可以创建一个新模型,然后使用ANOVA检验 。

2.  ## Analysis of Variance Table
    
3.  ## 
    
4.  ## Model 1: wage ~ ns(age, 5) + education
    
5.  ## Model 2: wage ~ year + s(age, 5) + education
    
6.  ## Model 3: wage ~ s(year, 4) + s(age, 5) + education
    
7.  ##   Res.Df     RSS Df Sum of Sq    F  Pr(>F) 
    
8.  ## 1   2990 3712881 
    
9.  ## 2   2989 3693842  1     19040 15.4 8.9e-05 ***
    
10.  ## 3   2986 3689770  3      4071  1.1    0.35 
    
11.  ## ---
    
12.  ## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

似乎添加线性year 成分要比不添加线性  成分的GAM好得多。

2.  ## 
    
3.  ## Deviance Residuals:
    
4.  ##     Min      1Q  Median      3Q     Max 
    
5.  ## -119.43  -19.70   -3.33   14.17  213.48 
    
6.  ## 
    
7.  ## (Dispersion Parameter for gaussian family taken to be 1236)
    
8.  ## 
    
9.  ##     Null Deviance: 5222086 on 2999 degrees of freedom
    
10.  ## Residual Deviance: 3689770 on 2986 degrees of freedom
    
11.  ## AIC: 29888 
    
12.  ## 
    
13.  ## Number of Local Scoring Iterations: 2 
    
14.  ## 
    
15.  ## Anova for Parametric Effects
    
16.  ##              Df  Sum Sq Mean Sq F value  Pr(>F) 
    
17.  ## s(year, 4)    1   27162   27162      22 2.9e-06 ***
    
18.  ## s(age, 5)     1  195338  195338     158 < 2e-16 ***
    
19.  ## education     4 1069726  267432     216 < 2e-16 ***
    
20.  ## Residuals  2986 3689770    1236 
    
21.  ## ---
    
22.  ## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
    
23.  ## 
    
24.  ## Anova for Nonparametric Effects
    
25.  ##             Npar Df Npar F  Pr(F) 
    
26.  ## (Intercept) 
    
27.  ## s(year, 4)        3    1.1   0.35 
    
28.  ## s(age, 5)         4   32.4 <2e-16 ***
    
29.  ## education 
    
30.  ## ---
    
31.  ## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

在具有非线性关系的模型中,   我们可以再次确认year 对模型没有贡献。

接下来,我们 将局部回归拟合GAM  。

在调用GAM之前,我们还可以使用局部回归来创建交互项。

我们可以 绘制结果曲面图  。

相关文章
|
6月前
【R语言实战】——带有高斯新息的金融时序的GARCH模型拟合预测及VAR/ES风险度量
【R语言实战】——带有高斯新息的金融时序的GARCH模型拟合预测及VAR/ES风险度量
|
6月前
【R语言实战】——带有新息为标准学生t分布的金融时序的GARCH模型拟合预测
【R语言实战】——带有新息为标准学生t分布的金融时序的GARCH模型拟合预测
|
6月前
|
机器学习/深度学习 数据可视化
R语言逻辑回归logistic模型ROC曲线可视化分析2例:麻醉剂用量影响、汽车购买行为2
R语言逻辑回归logistic模型ROC曲线可视化分析2例:麻醉剂用量影响、汽车购买行为
|
2月前
|
机器学习/深度学习 算法 前端开发
R语言基础机器学习模型:深入探索决策树与随机森林
【9月更文挑战第2天】决策树和随机森林作为R语言中基础且强大的机器学习模型,各有其独特的优势和适用范围。了解并熟练掌握这两种模型,对于数据科学家和机器学习爱好者来说,无疑是一个重要的里程碑。希望本文能够帮助您更好地理解这两种模型,并在实际项目中灵活应用。
|
3月前
|
资源调度 数据挖掘
R语言回归分析:线性回归模型的构建与评估
【8月更文挑战第31天】线性回归模型是统计分析中一种重要且实用的工具,能够帮助我们理解和预测自变量与因变量之间的线性关系。在R语言中,我们可以轻松地构建和评估线性回归模型,从而对数据背后的关系进行深入的探索和分析。
|
3月前
|
机器学习/深度学习 数据采集
R语言逻辑回归、GAM、LDA、KNN、PCA主成分分类分析预测房价及交叉验证
上述介绍仅为简要概述,每个模型在实施时都需要仔细调整与优化。为了实现高度精确的预测,模型选择与调参是至关重要的步骤,并且交叉验证是提升模型稳健性的有效途径。在真实世界的房价预测问题中,可能还需要结合地域经济、市场趋势等宏观因素进行综合分析。
67 3
|
6月前
【R语言实战】——Logistic回归模型
【R语言实战】——Logistic回归模型
|
6月前
|
数据可视化
R语言广义线性混合模型GLMMs在生态学中应用可视化2实例合集|附数据代码2
R语言广义线性混合模型GLMMs在生态学中应用可视化2实例合集|附数据代码
|
6月前
|
数据可视化 数据挖掘
R语言广义线性混合模型GLMMs在生态学中应用可视化2实例合集|附数据代码1
R语言广义线性混合模型GLMMs在生态学中应用可视化2实例合集|附数据代码
|
6月前
|
前端开发 数据可视化
R语言广义线性混合模型(GLMM)bootstrap预测置信区间可视化
R语言广义线性混合模型(GLMM)bootstrap预测置信区间可视化