工具变量法(两阶段最小二乘法2SLS)线性模型分析人均食品消费时间序列数据和回归诊断(上)

简介: 工具变量法(两阶段最小二乘法2SLS)线性模型分析人均食品消费时间序列数据和回归诊断

原文链接:http://tecdat.cn/?p=23759


简介


两阶段最小二乘法(2SLS)回归拟合的线性模型是一种常用的工具变量估计方法。

本文的主要内容是将各种标准的回归诊断扩展到2SLS。


2SLS估计的回顾


我们需要2SLS回归的一些基本结果来开发诊断方法,因此我们在此简单回顾一下该方法。2SLS回归是由Basmann(1957)和Theil(引自Theil 1971)在20世纪50年代独立发明的,他们采取了略微不同但又相当的方法,都在下面描述,以得出2SLS估计器。

我们想估计线性模型y=Xβ+ε,其中y是因变量的n×1观察向量,X是回归因子的n×p矩阵,通常初始列1s为回归常数。β是一个p×1的回归系数向量,需要根据数据进行估计,ε是一个n×1的误差向量,假定其分布为Nn(0,σ2In),其中Nn是多变量正态分布,0是一个n×1的零向量,In是n阶单位矩阵。假设X中的一些(也许是全部)回归因子是内生的,即它们被认为不独立于ε的意义。因此,β的普通最小二乘法(OLS)估计值bOLS=(X⊤X)-1X⊤y通常是有偏的,而且不一致。

现在假设我们有另一组独立于ϵ的q工具变量(IVs)Z,其中q≥p。如果q=p,我们可以直接应用IV来估计β,但如果q>p,我们有更多的IV,而不是我们需要的。简单地抛弃IVs是低效的,2SLS回归是一个通过合理的方式将IVs的数量减少到p的程序。

2SLS的第一阶段通过多元普通最小二乘法对模型矩阵X中的所有回归变量进行回归,得到q×p的回归系数矩阵B=(Z⊤Z)-1Z⊤X,以及拟合值Xˆ=ZB。B的列相当于X的每一列对Z的单独最小二乘回归产生的系数。如果X的某些列是外生的,那么这些列也会出现在Z中,因此,XˆX^中与外生调节器有关的列只是复制了X的相应列。

由于XˆX^的列是Z的列的线性组合,它们(渐进地)与ε不相关,使它们成为估计回归方程的合适IV。这个IV步骤是Theil方法中2SLS的第二个阶段。

作为一种替代方法,我们可以通过对XˆX^进行OLS回归来获得完全相同的β的估计值b2SLS,产生b2SLS=(Xˆ⊤Xˆ)Xˆ⊤y。这就是巴斯曼的方法,也是 "2SLS "这个名字的由来。

无论我们把第二阶段看成是IV估计还是OLS回归,我们都可以把这两个阶段合并成一个公式。

这就是sem包中的tsls()函数(Fox, Nie, and Byrnes 2020)所做的,但是从开发回归诊断的角度来看,通过两个不同的OLS回归来计算2SLS估计值是有利的。


对2Sls回归异常-数据诊断


就我们所知,用2SLS拟合的回归模型的诊断是一个相对被忽视的话题,但Belsley, Kuh和Welsch(1980, 266-68)简要地讨论了这个问题。删除诊断法直接评估每个案例对拟合回归模型的影响,方法是删除案例,重新拟合模型,并注意到回归系数或其他回归输出,如残差标准差,如何变化。

对于有影响的数据,总是可以通过粗暴的计算来获得案例删除诊断,即用每个案例依次删除来重新拟合模型,但这种方法效率低下,因此在大样本中没有吸引力。对于某些类别的统计模型,如广义线性模型(如Pregibon 1981),对个案删除诊断的计算要求较低的近似值是可用的,而对于线性模型,有效的 "更新 "公式是可用的(如Belsley, Kuh, and Welsch 1980所描述的),允许精确计算个案删除诊断的。

事实证明,正如Belsley、Kuh和Welsch所指出的,Phillips(1977年,公式15和16)给出了2SLS回归的精确更新公式,允许有效地计算个案选择统计。

其中,b2SLS-i是去除第ii种情况后的2SLS回归系数向量,以及

这里,yi是第i个案例的因变量值,x⊤ixi⊤是模型矩阵X的第i行,z⊤izi⊤是工具变量模型矩阵Z的第i行。

Belsley, Kuh和Welsch特别研究了(用我们的符号)dfbetai=b2SLS-b2SLS-i的值。他们还讨论了残差标准差s-i的删除值。

然后,Belsley、Kuh和Welsch计算它们对拟合值(和回归系数)影响的综合度量dffits为

其中(如前)x⊤ixi⊤是模型矩阵X的第i行,XˆX^是第二阶段回归变量的模型矩阵。

代表将y转换为拟合值的n×n矩阵,yˆ=H∗y。在OLS回归中,类似的量是hat矩阵H=X(X⊤X)-1X⊤。Belsley, Kuh和Welsch指出,H∗与H不同,它不是一个正交投影矩阵,将y正交地投影到X的列所跨越的子空间上。特别是,尽管H∗和H一样,是等值的(H∗=H∗H∗),并且trace(H∗)=ptrace(H∗)=p,但H∗和H不同,是不对称的,因此它的对角线元素不能被当作杠杆的总结性措施,也就是说,不能被当作hat值。

Belsley, Kuh和Welsch建议简单地使用第二阶段回归的hat值。这些是H2=Xˆ(Xˆ⊤Xˆ)-1Xˆ⊤的对角线条目hi=hii。我们在下面讨论一些替代方案。

除了hatvalues、dfbeta、s-i和dfits之外,还计算cook距离Di,这基本上是dfits的一个稍有不同的比例版本,它使用总体残差标准差s来代替删除的标准差s-i。

因为它们具有相等的方差,并且在正态线性模型下近似于t分布,所以 studentized残差对于检测异常值和解决正态分布误差的假设非常有用。studentized残差与OLS回归相类似,定义为

其中ei=yi-x⊤ib 2SLS是第i种情况的因变量残差。

如前所述,Belsley, Kuh, and Welsch (1980)建议使用第二阶段回归的 hatvalues。这是一个合理的选择,但是它有可能遗漏那些在第一阶段有高杠杆率但在第二阶段回归中没有的案例。让h(1)i代表第一阶段的hatvalues,h(2)i代表第二阶段的hatvalues。如果模型包括一个截距,两组hatvalues都以1/n和1为界,但第一阶段的平均hatvalues是q/n,而第二阶段的平均hatvalues是p/n。为了使两个阶段的hatvalues具有可比性,我们将每个hatvalues除以其平均值,h(1∗)i=h(1)iq/n;h(2∗)i=h(2)ip/n。然后我们可以把两阶段的hatvalue定义为每种情况下两者中较大的一个,hi=(p/n)×max(h(1∗)i,h(2∗)i),或者定义为它们的几何平均。

异常数据诊断


标准的R回归模型通用方法,包括anova()(用于模型比较),predicted()用于计算预测值,model.matrix()(用于模型或第一或第二阶段的回归),print(),residuals()(有几种),summary(),update(),和vcov()。


例子


数据在Kmenta(1986年)中用来说明(通过2SLS和其他方法)对线性联立方程计量经济学模型的估计。这些数据代表了经济从1922年到1941年的年度时间序列,有以下变量。

  • Q,人均食品消费
  • P,食品价格与一般消费价格的比率
  • D, 可支配收入
  • F, 前一年农民收到的价格与一般消费价格的比率
  • A, 年为单位的时间

该数据集很小,我们可以对其进行检查。

估计以下两个方程式模型,第一个方程式代表需求,第二个代表供应。

变量D、F和A被视为外生变量,当然常数回归因子(一列1)也是如此,而两个结构方程中的P是内生解释变量。由于有四个工具变量可用,第一个结构方程有三个系数,是过度识别的,而第二个结构方程有四个系数,是刚刚识别的。


点击标题查阅往期内容


R语言工具变量与两阶段最小二乘法


01

02

03

04


外生变量的数值是真实的,而内生变量的数值是由Kmenta根据模型生成(即模拟)的,参数的假设值如下。

解决内生变量P和Q的结构方程,可以得到模型的简化形式

Kmenta独立地从N(0,1)中抽出20个δ1和δ2的值,然后设定ν1=2δ1和

结构方程估计如下(比较Kmenta 1986, 686)。

默认情况下,summary()会输出2SLS回归的三个 "诊断 "测试的结果。这些测试不是本文的重点,所以我们只对它们进行简单的评论。

  • 一个好的工具变量与一个或多个解释变量高度相关,同时与误差保持不相关。如果一个内生的回归者与工具变量只有微弱的关系,那么它的系数将被不精确地估计。在弱工具的诊断测试中,我们希望有一个大的测试统计量和小的p值,Kmenta模型中的两个回归方程就是如此。
  • 应用于2SLS回归中,Wu-Hausman检验是对内生性的一种检验。如果所有的回归者都是外生的,那么OLS和2SLS的估计都是一致的,并且OLS的估计更有效,但是如果一个或多个回归者是内生的,那么OLS的估计就不一致了。大的检验统计量和小的p值,就像在这个例子中一样,表明OLS估计器是不一致的,因此,2SLS估计器是首选。
  • Sargan检验是对过度识别的检验。也就是说,在一个过度识别的回归方程中,如Kmenta的需求方程中,工具变量比要估计的系数多,工具变量有可能提供关于系数值的冲突信息。因此,大的检验统计量和小的Sargan检验的pp值表明,该模型被错误地指定了。在这个例子中,尽管我们知道(通过数据的构建方式)需求方程是正确的,但我们还是偶然得到了一个适度小的pp值0.084。Sargan检验不适用于刚刚确定的回归方程,其工具变量和系数的数量相等,如Kmenta的供给方程。

lm "类对象的几个方法与产生的对象正常工作。例如,对象的plot()方法调用了相应的 "lm "方法并产生了可解释的图,这里是Kmenta模型中需求方程的2SLS拟合。

par(mfrow=c(2, 2))
plot(deq)

然而,在这种情况下,我们更喜欢描述的这些诊断图的版本。

数据表现良好。例如,在第一个结构方程中,学生化残差的QQ图和hatvalues、学生化残差和库克cook距离的 "影响图 "都是不明显的,除了几个高杠杆但在一起的案例。

qqPlot

influence

影响图中的圆圈面积与Cook's D成正比,水平线画在学生化残差标度的0和±2处(rstudent=2处的水平线不在图中),垂直线在2×h¯和3×h¯处。

为了产生一个更有趣的例子,我们将把高杠杆的第20种情况(即1941年)的QQ值从Q20=106.232改为Q20=95,这个值完全在数据中QQ的范围内,但与其他数据不一致。

然后重复对第一个结构方程的2SLS拟合,并将结果与未被破坏的数据进行比较,发现回归系数有很大变化。

compareCoefs(deq, deq1)

有问题的第20个案例(1941年)通过异常数据回归诊断法清楚地显示出来。

qqPlot(deq1)

outlier

influence Plot

avPlots(deq1)

去掉第20种情况,产生的估计系数接近于未被破坏的数据的系数。

compareCoefs(deq, deq1, deq1.20)

估计系数的标准误差比原来大,因为我们现在有19个而不是20个案例,也因为解释变量的变化减少了。

发现hatvaues的三种定义是否对这个例子产生了实际的影响,是有一定的意义的。三种hatvalues的散点图矩阵表明,它们都产生了类似的结果。

最后,让我们验证一下删除诊断的计算结果是否正确。


工具变量法(两阶段最小二乘法2SLS)线性模型分析人均食品消费时间序列数据和回归诊断(下):https://developer.aliyun.com/article/1490611?spm=a2c6h.13148508.setting.16.658d4f0eueN6WO

相关文章
|
1月前
|
存储 Oracle 关系型数据库
【赵渝强老师】MySQL InnoDB的数据文件与重做日志文件
本文介绍了MySQL InnoDB存储引擎中的数据文件和重做日志文件。数据文件包括`.ibd`和`ibdata`文件,用于存放InnoDB数据和索引。重做日志文件(redo log)确保数据的可靠性和事务的持久性,其大小和路径可由相关参数配置。文章还提供了视频讲解和示例代码。
135 11
【赵渝强老师】MySQL InnoDB的数据文件与重做日志文件
|
15天前
|
监控 应用服务中间件 定位技术
要统计Nginx的客户端IP,可以通过分析Nginx的访问日志文件来实现
要统计Nginx的客户端IP,可以通过分析Nginx的访问日志文件来实现
|
25天前
|
前端开发 数据处理 Android开发
Flutter前端开发中的调试技巧与工具使用方法,涵盖调试的重要性、基本技巧如打印日志与断点调试、常用调试工具如Android Studio/VS Code调试器和Flutter Inspector的介绍
本文深入探讨了Flutter前端开发中的调试技巧与工具使用方法,涵盖调试的重要性、基本技巧如打印日志与断点调试、常用调试工具如Android Studio/VS Code调试器和Flutter Inspector的介绍,以及具体操作步骤、常见问题解决、高级调试技巧、团队协作中的调试应用和未来发展趋势,旨在帮助开发者提高调试效率,提升应用质量。
44 8
|
28天前
|
监控 安全 网络安全
使用EventLog Analyzer日志分析工具监测 Windows Server 安全威胁
Windows服务器面临多重威胁,包括勒索软件、DoS攻击、内部威胁、恶意软件感染、网络钓鱼、暴力破解、漏洞利用、Web应用攻击及配置错误等。这些威胁严重威胁服务器安全与业务连续性。EventLog Analyzer通过日志管理和威胁分析,有效检测并应对上述威胁,提升服务器安全性,确保服务稳定运行。
|
1月前
|
存储 SQL 监控
|
1月前
|
运维 监控 安全
|
1月前
|
监控 关系型数据库 MySQL
分析慢查询日志
【10月更文挑战第29天】分析慢查询日志
38 3
|
1月前
|
运维 Prometheus 监控
特定用途的日志分析工具
【10月更文挑战第20天】
58 5
|
1月前
|
存储 机器学习/深度学习 传感器
商业日志分析工具
【10月更文挑战第20天】
51 5
|
1月前
|
监控 关系型数据库 数据库
怎样分析慢查询日志?
【10月更文挑战第29天】怎样分析慢查询日志?
39 2