原文链接:http://tecdat.cn/?p=5231
为了方便起见,这些模型通常简称为TAR模型。这些模型捕获了线性时间序列模型无法捕获的行为,例如周期,幅度相关的频率和跳跃现象。Tong和Lim(1980)使用阈值模型表明,该模型能够发现黑子数据出现的不对称周期性行为。
一阶TAR模型的示例:
σ是噪声标准偏差,Yt-1是阈值变量,r是阈值参数, {et}是具有零均值和单位方差的iid随机变量序列。
每个线性子模型都称为一个机制。上面是两个机制的模型。
考虑以下简单的一阶TAR模型:
#低机制参数 i1 = 0.3 p1 = 0.5 s1 = 1 #高机制参数 i2 = -0.2 p2 = -1.8 s2 = 1 thresh = -1 delay = 1 #模拟数据 y=sim(n=100,Phi1=c(i1,p1),Phi2=c(i2,p2),p=1,d=delay,sigma1=s1,thd=thresh,sigma2=s2)$y #绘制数据 plot(y=y,x=1:length(y),type='o',xlab='t',ylab=expression(Y\[t\]) abline(thresh,0,col="red")
点击标题查阅往期内容
01
02
03
04
TAR模型_框架_是原始TAR模型的修改版本。它是通过抑制噪声项和截距并将阈值设置为0来获得的:
_框架_的稳定性以及某些规律性条件意味着TAR的平稳性。稳定性可以理解为,对于任何初始值Y1,_框架_都是有界过程。
在[164]中:
#使用不同的起点检查稳定性 startvals = c(-2, -1.1,-0.5, 0.8, 1.2, 3.4) count = 1 for (s in startvals) { ysk\[1 } else { ysk\[i\] = -1.8*ysk\[i-1\] } count = count + 1 } #绘制不同实现 matplot(t(x),type="l" abline(0,0)
Chan和Tong(1985)证明,如果满足以下条件,则一阶TAR模型是平稳的
一般的两机制模型写为:
在这种情况下,稳定性更加复杂。然而,Chan and Tong(1985)证明,如果
模型估计
一种方法以及此处讨论的方法是条件最小二乘(CLS)方法。
为简单起见,除了假设p1 = p2 = p,1≤d≤p,还假设σ1=σ2=σ。然后可以将TAR模型方便地写为
如果Yt-d> r,则I(Yt-d> r)= 1,否则为0。CLS最小化条件残差平方和:
在这种情况下,可以根据是否Yt-d≤r将数据分为两部分,然后执行OLS估计每个线性子模型的参数。
如果r未知。
在r值范围内进行搜索,该值必须在时间序列的最小值和最大值之间,以确保该序列实际上超过阈值。然后从搜索中排除最高和最低10%的值
- 在此受限频带内,针对不同的r = yt值估算TAR模型。
- 选择r的值,使对应的回归模型的残差平方和最小。
#找到分位数 lq = quantile(y,0.10) uq = quantile(y,0.90) #绘制数据 plot(y=y,x=1:length(y),type='o',xlab='t'abline(lq,0,col="blue") abline(uq,0,col="blue")
#模型估计数 sum( (lq <= y ) & (y <= uq) ) 80
如果d未知。
令d取值为1,2,3,...,p。为每个d的潜在值估算TAR模型,然后选择残差平方和最小的模型。
Chan(1993)已证明,CLS方法是一致的。
最小AIC(MAIC)方法
由于在实践中这两种情况的AR阶数是未知的,因此需要一种允许对它们进行估计的方法。对于TAR模型,对于固定的r和d,AIC变为
然后,通过最小化AIC对象来估计参数,以便在某个时间间隔内搜索阈值参数,以使任何方案都有足够的数据进行估计。
#估算模型 #如果知道阈值 #如果阈值尚不清楚 #MAIC 方法 for (d in 1:3) { if (model.tar.s$AIC < AIC.best) { AIC.best = model.tar.s$AIC model.best$d = d model.best$p1 = model.tar.s ar.s$AIC, signif(model.tar.s$thd,4) AICM
非线性测试
1.使用滞后回归图进行目测。
绘制Yt与其滞后。拟合的回归曲线不是很直,可能表明存在非线性关系。
在[168]中:
lagplot(y)
2.Keenan检验:
考虑以下由二阶Volterra展开引起的模型:
其中{ϵt} 的iid正态分布为零均值和有限方差。如果η=0,则该模型成为AR(mm)模型。
可以证明,_Keenan_检验等同于回归模型中检验η=0:
其中Yt ^ 是从Yt-1,...,Yt-m上的Yt回归得到的拟合值。
3. Tsay检验:
_Keenan_测试的一种更通用的替代方法。用更复杂的表达式替换为Keenan检验给出的上述模型中的项η(∑mj = 1ϕjYt-j)2。最后对所有非线性项是否均为零的二次回归模型执行F检验。
在[169]中:
#检查非线性: Keenan, Tsay #Null is an AR model of order 1 Keenan.test(y,1) $test.stat 90.2589565661567 $p.value 1.76111433596097e-15 $order 1
在[170]中:
Tsay.test(y,1) $test.stat 71.34 $p.value 3.201e-13 $order 1
4.检验阈值非线性
这是基于似然比的测试。
零假设是AR(pp)模型;另一种假设是具有恒定噪声方差的p阶的两区域TAR模型,即σ1=σ2=σ。使用这些假设,可以将通用模型重写为
零假设表明ϕ2,0 = ϕ2,1 = ... = ϕ2,p = 0。
似然比检验统计量可以证明等于
其中n-p是有效样本大小,σ^ 2(H0)是线性AR(p)拟合的噪声方差的MLE,而σ^ 2(H1)来自TAR的噪声方差与在某个有限间隔内搜索到的阈值的MLE。
H0下似然比检验的采样分布具有非标准采样分布;参见Chan(1991)和Tong(1990)。
在[171]中:
res = tlrt(y, p=1, d=1, a=0.15, b=0.85) res $percentiles 14.1 85.9 $test.statistic : 142.291963130459 $p.value : 0
模型诊断
使用残差分析完成模型诊断。TAR模型的残差定义为
标准化残差是通过适当的标准偏差标准化的原始残差:
如果TAR模型是真正的数据机制,则标准化残差图应看起来是随机的。可以通过检查标准化残差的样本ACF来检查标准化误差的独立性假设。
#模型诊断 diag(model.tar.best, gof.lag=20)
R语言时间序列TAR阈值自回归模型(下):https://developer.aliyun.com/article/1489878?spm=a2c6h.13148508.setting.21.658d4f0eueN6WO