PolarDB 开源版通过 brin 实现千分之一的存储空间, 高效率检索时序数据

简介: 背景PolarDB 的云原生存算分离架构, 具备低廉的数据存储、高效扩展弹性、高速多机并行计算能力、高速数据搜索和处理; PolarDB与计算算法结合, 将实现双剑合璧, 推动业务数据的 价值产出, 将数据变成生产力.本文将介绍PolarDB 开源版通过 brin 实现千分之一的存储空间, 高效率检...

1. 背景

PolarDB 的云原生存算分离架构, 具备低廉的数据存储、高效扩展弹性、高速多机并行计算能力、高速数据搜索和处理; PolarDB与计算算法结合, 将实现双剑合璧, 推动业务数据的 价值产出, 将数据变成生产力.

本文将介绍PolarDB 开源版通过 brin 实现千分之一的存储空间, 高效率检索时序数据

测试环境为macos+docker, polardb部署请参考如何用 PolarDB 证明巴菲特的投资理念 - 包括PolarDB简单部署

2. 原理

PolarDB 的普通表采用堆存储, 最小分配单位为block, 不够了就在文件末尾追加block.

所以根据时序数据的append only 、 时间字段递增特征. 一个block内的时间字段的值基本上是相邻的, 相邻的block时间值也相邻.

时序数据通常是按片搜索, 例如分钟、小时、天等粒度的片搜索和统计.

怎样高效、低成本的检索时序数据? PolarDB BRIN 块级别范围索引, 千分之一的存储, 实现btree同级别的片区搜索性能.

brin为什么省存储呢? 因为一片blocks, 只存储其索引字段的min,max,nullif的统计值. 所以非常节省空间.

3. 模拟测试

  1. 建立时序表

create table tbl (id int, v1 int, v2 int, crt_time timestamp(0));  
  1. 写入500万条时序数据

insert into tbl select id, random()*10, random()*100, now()+(id||'second')::interval from generate_series(1,5000000) id;  
  1. 查询时序字段的边界值

postgres=# select min(crt_time), max(crt_time) from tbl;  
         min         |         max           
---------------------+---------------------  
 2022-12-21 08:47:19 | 2023-02-17 05:40:38  
(1 row)  
  1. 普通btree索引的测试, 占用空间等.

create index on tbl using btree (crt_time);  
postgres=# \dt+  
                    List of relations  
 Schema | Name | Type  |  Owner   |  Size  | Description   
--------+------+-------+----------+--------+-------------  
 public | tbl  | table | postgres | 249 MB |   
(1 row)  
  
postgres=# \di+  
                              List of relations  
 Schema |       Name       | Type  |  Owner   | Table |  Size  | Description   
--------+------------------+-------+----------+-------+--------+-------------  
 public | tbl_crt_time_idx | index | postgres | tbl   | 107 MB |   
(1 row)  
postgres=# explain (analyze,verbose,timing,costs,buffers) select count(*) from tbl where crt_time between '2022-12-30' and '2022-12-31';  
                                                                                QUERY PLAN                                                                                   
---------------------------------------------------------------------------------------------------------------------------------------------------------------------------  
 Aggregate  (cost=32345.17..32345.18 rows=1 width=8) (actual time=19.311..19.317 rows=1 loops=1)  
   Output: count(*)  
   Buffers: shared hit=790  
   ->  Bitmap Heap Scan on public.tbl  (cost=532.68..32282.67 rows=25000 width=0) (actual time=5.786..13.871 rows=86401 loops=1)  
         Recheck Cond: ((tbl.crt_time >= '2022-12-30 00:00:00'::timestamp without time zone) AND (tbl.crt_time <= '2022-12-31 00:00:00'::timestamp without time zone))  
         Heap Blocks: exact=551  
         Buffers: shared hit=790  
         ->  Bitmap Index Scan on tbl_crt_time_idx  (cost=0.00..526.43 rows=25000 width=0) (actual time=5.723..5.724 rows=86401 loops=1)  
               Index Cond: ((tbl.crt_time >= '2022-12-30 00:00:00'::timestamp without time zone) AND (tbl.crt_time <= '2022-12-31 00:00:00'::timestamp without time zone))  
               Buffers: shared hit=239  
 Planning Time: 0.081 ms  
 Execution Time: 19.550 ms  
(12 rows)  
  1. 判断时间字段是否适合brin索引: 相关性为1, 表明这个字段有自增属性、而且边界清晰. 非常适合brin索引.

相关性的范围是-1到1, 越接近1或者-1都适合brin.

postgres=# select correlation from pg_stats where tablename='tbl' and attname='crt_time';  
 correlation   
-------------  
           1  
(1 row)  
  1. 测试brin索引, 观察其占用空间, 查询性能.

drop index tbl_crt_time_idx;  
  
  
create index on tbl using brin (crt_time);  
  
      
postgres=# explain (analyze,verbose,timing,costs,buffers) select count(*) from tbl where crt_time between '2022-12-30' and '2022-12-31';  
                                                                                QUERY PLAN                                                                                   
---------------------------------------------------------------------------------------------------------------------------------------------------------------------------  
 Aggregate  (cost=33599.60..33599.61 rows=1 width=8) (actual time=26.022..26.025 rows=1 loops=1)  
   Output: count(*)  
   Buffers: shared hit=642  
   ->  Bitmap Heap Scan on public.tbl  (cost=33.38..33387.41 rows=84878 width=0) (actual time=0.937..18.871 rows=86401 loops=1)  
         Recheck Cond: ((tbl.crt_time >= '2022-12-30 00:00:00'::timestamp without time zone) AND (tbl.crt_time <= '2022-12-31 00:00:00'::timestamp without time zone))  
         Rows Removed by Index Recheck: 14079  
         Heap Blocks: lossy=640  
         Buffers: shared hit=642  
         ->  Bitmap Index Scan on tbl_crt_time_idx  (cost=0.00..12.16 rows=100402 width=0) (actual time=0.420..0.421 rows=6400 loops=1)  
               Index Cond: ((tbl.crt_time >= '2022-12-30 00:00:00'::timestamp without time zone) AND (tbl.crt_time <= '2022-12-31 00:00:00'::timestamp without time zone))  
               Buffers: shared hit=2  
 Planning Time: 0.168 ms  
 Execution Time: 26.162 ms  
(13 rows)  
  
  
  
postgres=# \di+  
                             List of relations  
 Schema |       Name       | Type  |  Owner   | Table | Size  | Description   
--------+------------------+-------+----------+-------+-------+-------------  
 public | tbl_crt_time_idx | index | postgres | tbl   | 48 kB |   
(1 row)  

结论符合预期:

  • brin占用空间只有btree的2000分之一大小, 但是在进行范围条件搜索时, brin索引性能相当于btree, 扫描更少的数据块得到同级别的性能.

4. 参考

作者介绍
目录