【视频】广义相加模型(GAM)在电力负荷预测中的应用(二)https://developer.aliyun.com/article/1485894
12用GAM进行建模用电负荷时间序列
我已经准备了一个文件,其中包含四个用电时间序列来进行分析。数据操作将由data.table
程序包完成。
将提及的智能电表数据读到data.table
。
DT <- as.data.table(read\_feather("ind"))
使用GAM回归模型。将工作日的字符转换为整数,并使用recode
包中的函数重新编码工作日:1.星期一,…,7星期日。
DT\[, week_num := as.integer(car::recode(week, "'Monday'='1';'Tuesday'='2';'Wednesday'='3';'Thursday'='4'; 'Friday'='5';'Saturday'='6';'Sunday'='7'"))\] 将信息存储在日期变量中,以简化工作。 n_type <- unique(DT\[, type\]) n_date <- unique(DT\[, date\]) n_weekdays <- unique(DT\[, week\]) period <- 48 让我们看一下用电量的一些数据并对其进行分析。 data\_r <- DT\[(type == n\_type\[1\] & date %in% n_date\[57:70\])\] ggplot(data\_r, aes(date\_time, value)) + geom_line() + theme(panel.border = element_blank(), panel.background = element_blank(), panel.grid.minor = element_line(colour = "grey90"), panel.grid.major = element_line(colour = "grey90"), panel.grid.major.x = element_line(colour = "grey90"), axis.text = element_text(size = 10), axis.title = element_text(size = 12, face = "bold")) + labs(x = "Date", y = "Load (kW)")
在绘制的时间序列中可以看到两个主要的季节性:每日和每周。我们在一天中有48个测量值,在一周中有7天,因此这将是我们用来对因变量–电力负荷进行建模的自变量。
训练我们的第一个GAM。通过平滑函数s
对自变量建模,对于每日季节性,使用三次样条回归,对于每周季节性,使用P样条。
gam_1 <- gam(Load ~ s(Daily, bs = "cr", k = period) + s(Weekly, bs = "ps", k = 7), data = matrix_gam, family = gaussian) 首先是可视化。 layout(matrix(1:2, nrow = 1)) plot(gam_1, shade = TRUE)
我们在这里可以看到变量对电力负荷的影响。在左图中,白天的负载峰值约为下午3点。在右边的图中,我们可以看到在周末负载量减少了。
让我们使用summary
函数对第一个模型进行诊断。
## ## Family: gaussian ## Link function: identity ## ## Formula: ## Load ~ s(Daily, bs = "cr", k = period) + s(Weekly, bs = "ps", ## k = 7) ## ## Parametric coefficients: ## Estimate Std. Error t value Pr(>|t|) ## (Intercept) 2731.67 18.88 144.7 <2e-16 *** ## --- ## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 ## ## Approximate significance of smooth terms: ## edf Ref.df F p-value ## s(Daily) 10.159 12.688 119.8 <2e-16 *** ## s(Weekly) 5.311 5.758 130.3 <2e-16 *** ## --- ## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 ## ## R-sq.(adj) = 0.772 Deviance explained = 77.7% ## GCV = 2.4554e+05 Scale est. = 2.3953e+05 n = 672
EDF:估计的自由度–可以像对给定变量进行平滑处理那样来解释(较高的EDF值表示更复杂的样条曲线)。P值:给定变量对因变量的统计显着性,通过F检验进行检验(越低越好)。调整后的R平方(越高越好)。我们可以看到R-sq.(adj)值有点低。
让我们绘制拟合值:
我们需要将两个自变量的交互作用包括到模型中。
第一种交互类型对两个变量都使用了一个平滑函数。
gam_2 <- gam(Load ~ s(Daily, Weekly), summary(gam_2)$r.sq ## \[1\] 0.9352108 R方值表明结果要好得多。 summary(gam_2)$s.table ## edf Ref.df F p-value ## s(Daily,Weekly) 28.7008 28.99423 334.4754 0
似乎也很好,p值为0,这意味着自变量很重要。拟合值图:
现在,让我们尝试上述变量交互。这可以通过function完成te
,也可以定义基本函数。
## \[1\] 0.9268452 与以前的模型相似gam_2。 summary(gam_3)$s.table ## edf Ref.df F p-value ## te(Daily,Weekly) 23.65709 23.98741 354.5856 0
非常相似的结果。让我们看一下拟合值:
与gam_2
模型相比,只有一点点差异,看起来te
拟合更好。
## \[1\] 0.9727604 summary(gam_4)$sp.criterion ## GCV.Cp ## 34839.46 summary(gam_4)$s.table ## edf Ref.df F p-value ## te(Daily,Weekly) 119.4117 149.6528 160.2065 0
我们可以在这里看到R方略有上升。
【视频】广义相加模型(GAM)在电力负荷预测中的应用(四)https://developer.aliyun.com/article/1485897