1导言
这篇文章探讨了为什么使用广义相加模型 是一个不错的选择。为此,我们首先需要看一下线性回归,看看为什么在某些情况下它可能不是最佳选择。
2回归模型
假设我们有一些带有两个属性Y和X的数据。如果它们是线性相关的,则它们可能看起来像这样:
为了检查这种关系,我们可以使用回归模型。线性回归是一种使用X来预测变量Y的方法。将其应用于我们的数据将预测成红线的一组值:
这就是“直线方程式”。根据此等式,我们可以从直线在y轴上开始的位置(“截距”或α)开始描述,并且每个单位的x都增加了多少y(“斜率”),我们将它称为x的系数,或称为β)。还有一点自然的波动,如果没有的话,所有的点都将是完美的。我们将此称为“残差”(ϵ)。
数学上是:
或者,如果我们用实际数字代替,则会得到以下结果:
这篇文章通过考虑每个数据点和线之间的差异(“残差)然后最小化这种差异来估算模型。
我们在线的上方和下方都有正误差和负误差,因此,通过对它们进行平方并最小化“平方和”,使它们对于估计都为正。这称为“普通最小二乘法”或OLS。
3非线性关系如何?
因此,如果我们的数据看起来像这样,我们该怎么办:
我们刚刚看到的模型的关键假设之一是y和x线性相关。如果我们的y不是正态分布的,则使用广义线性模型 _(Nelder&Wedderburn,1972)_,其中y通过链接函数进行变换,但再次假设f(y)和x线性相关。如果不是这种情况,并且关系在x的范围内变化,则可能不是最合适的。我们在这里有一些选择:
- 我们可以使用线性拟合,但是如果这样做的话,我们会在数据的某些部分上面或者下面。
- 我们可以分为几类。我在下面的图中使用了三个,这是一个合理的选择。同样,我们可能处于数据某些部分之下或之上,而在类别之间的边界附近似乎是准确的。例如,如果x = 49时,与x = 50相比,y是否有很大不同?
- 我们可以使用多项式之类的变换。下面,我使用三次多项式,因此模型适合: 。这些的组合使函数可以光滑地近似变化。这是一个很好的选择,但可能会极端波动,并可能在数据中引起相关性,从而降低拟合度。
4样条曲线
多项式的进一步细化是拟合“分段”多项式,我们在数据范围内将多项式链在一起以描述形状。“样条线”是分段多项式,以绘图员用来绘制曲线的工具命名。物理样条曲线是一种柔性条,可以弯曲成形,并由砝码固定。在构造数学样条曲线时,我们有多项式函数,二阶导数连续,固定在“结”点上。
下面是一个ggplot2
对象,该 对象的 geom_smooth
的公式包含ns
函数中的“自然三次样条” 。这种样条曲线为“三次” ,并且使用10个结
【视频】广义相加模型(GAM)在电力负荷预测中的应用(二)https://developer.aliyun.com/article/1485894