用SPSS Modeler的Web复杂网络对所有腧穴进行关联规则分析3

简介: 用SPSS Modeler的Web复杂网络对所有腧穴进行关联规则分析3

r语言中对LASSO回归,Ridge岭回归和弹性网络Elastic Net模型实现1:https://developer.aliyun.com/article/1485075

惩罚因素

此参数允许用户将单独的惩罚因子应用于每个系数。每个参数的默认值为1,但可以指定其他值。特别是,任何penalty.factor 等于零的变量 都不会受到惩罚

在许多情况下,某些变量可能是重要,我们希望一直保留它们,这可以通过将相应的惩罚因子设置为0来实现:

我们从标签中看到惩罚因子为0的三个变量始终保留在模型中,而其他变量遵循典型的正则化路径并最终缩小为0。

自定义图

有时,尤其是在变量数量很少的情况下,我们想在图上添加变量标签。

我们首先生成带有10个变量的一些数据,然后,我们拟合glmnet模型,并绘制标准图。

我们希望用变量名标记曲线。在路径的末尾放置系数的位置。

多元正态

使用family = "mgaussian" option 获得多元正态分布glmnet

显然,顾名思义,y不是向量,而是矩阵。结果,每个λ值的系数也是一个矩阵。

在这里,我们解决以下问题:

这里,βj是p×K系数矩阵β的第j行,对于单个预测变量xj,我们用每个系数K向量βj的组套索罚分代替每个单一系数的绝对罚分。

我们使用预先生成的一组数据进行说明。

我们拟合数据,并返回对象“ mfit”。

mfit = glmnet(x, y, family = "mgaussian")

如果为 standardize.response = TRUE,则将因变量标准化。

为了可视化系数,我们使用 plot 函数。

注意我们设置了 type.coef = "2norm"。在此设置下,每个变量绘制一条曲线,其值等于ℓ2范数。默认设置为 type.coef = "coef",其中为每个因变量创建一个系数图。

通过使用该函数coef ,我们可以提取要求的λ值的系数, 并通过进行预测 。

## , , 1
## 
##           y1      y2      y3    y4
## \[1,\] -4.7106 -1.1635  0.6028 3.741
## \[2,\]  4.1302 -3.0508 -1.2123 4.970
## \[3,\]  3.1595 -0.5760  0.2608 2.054
## \[4,\]  0.6459  2.1206 -0.2252 3.146
## \[5,\] -1.1792  0.1056 -7.3353 3.248
## 
## , , 2
## 
##           y1      y2      y3    y4
## \[1,\] -4.6415 -1.2290  0.6118 3.780
## \[2,\]  4.4713 -3.2530 -1.2573 5.266
## \[3,\]  3.4735 -0.6929  0.4684 2.056
## \[4,\]  0.7353  2.2965 -0.2190 2.989
## \[5,\] -1.2760  0.2893 -7.8259 3.205

预测结果保存在三维数组中,其中前两个维是每个因变量的预测矩阵,第三个维表示因变量。

我们还可以进行k折交叉验证。

我们绘制结果 cv.glmnet 对象“ cvmfit”。

显示选定的λ最佳值

cvmfit$lambda.min
## \[1\] 0.04732
cvmfit$lambda.1se
## \[1\] 0.1317

逻辑回归

当因变量是分类的时,逻辑回归是另一个广泛使用的模型。如果有两个可能的结果,则使用二项式分布,否则使用多项式。

二项式模型

对于二项式模型,假设因变量的取值为G = {1,2} 。表示yi = I(gi = 1)。我们建模

可以用以下形式写

惩罚逻辑回归的目标函数使用负二项式对数似然

我们的算法使用对数似然的二次逼近,然后对所得的惩罚加权最小二乘问题进行下降。这些构成了内部和外部循环。

出于说明目的,我们 从数据文件加载预生成的输入矩阵 x 和因变量 y

对于二项式逻辑回归,因变量y可以是两个级别的因子,也可以是计数或比例的两列矩阵。

glmnet 二项式回归的其他可选参数与正态分布的参数 几乎相同。不要忘记将family 选项设置 为“ binomial”。

fit = glmnet(x, y, family = "binomial")

像以前一样,我们可以输出和绘制拟合的对象,提取特定λ处的系数,并进行预测。

逻辑回归略有不同,主要体现在选择上 type。“链接”和“因变量”不等价,“类”仅可用于逻辑回归。总之,*“链接”给出了线性预测变量

  • “因变量”给出合适的概率
  • “类别”产生对应于最大概率的类别标签。
  • “系数”计算值为的系数 s

在下面的示例中,我们在λ=0.05,0.01的情况下对类别标签进行了预测。

##      1   2  
## \[1,\] "0" "0"
## \[2,\] "1" "1"
## \[3,\] "1" "1"
## \[4,\] "0" "0"
## \[5,\] "1" "1"

对于逻辑回归,type.measure

  • “偏差”使用实际偏差。
  • “ mae”使用平均绝对误差。
  • “class”给出错误分类错误。
  • “ auc”(仅适用于两类逻辑回归)给出了ROC曲线下的面积。

例如,

它使用分类误差作为10倍交叉验证的标准。

我们绘制对象并显示λ的最佳值。

cvfit$lambda.min
## \[1\] 0.01476
cvfit$lambda.1se
## \[1\] 0.02579

coef 并且 predict 类似于正态分布案例,因此我们省略了细节。我们通过一些例子进行回顾。

## 31 x 1 sparse Matrix of class "dgCMatrix"
##                    1
## (Intercept)  0.24371
## V1           0.06897
## V2           0.66252
## V3          -0.54275
## V4          -1.13693
## V5          -0.19143
## V6          -0.95852
## V7           .      
## V8          -0.56529
## V9           0.77454
## V10         -1.45079
## V11         -0.04363
## V12         -0.06894
## V13          .      
## V14          .      
## V15          .      
## V16          0.36685
## V17          .      
## V18         -0.04014
## V19          .      
## V20          .      
## V21          .      
## V22          0.20882
## V23          0.34014
## V24          .      
## V25          0.66310
## V26         -0.33696
## V27         -0.10570
## V28          0.24318
## V29         -0.22445
## V30          0.11091

如前所述,此处返回的结果仅针对因子因变量的第二类。

##       1  
##  \[1,\] "0"
##  \[2,\] "1"
##  \[3,\] "1"
##  \[4,\] "0"
##  \[5,\] "1"
##  \[6,\] "0"
##  \[7,\] "0"
##  \[8,\] "0"
##  \[9,\] "1"
## \[10,\] "1"

多项式模型

对于多项式模型,假设因变量变量的K级别为G = {1,2,…,K}。在这里我们建模

设Y为N×K指标因变量矩阵,元素yiℓ= I(gi =ℓ)。然后弹性网惩罚的负对数似然函数变为

β是系数的p×K矩阵。βk指第k列(对于结果类别k),βj指第j行(变量j的K个系数的向量)。最后一个惩罚项是||βj|| q ,我们对q有两个选择:q∈{1,2}。当q = 1时,这是每个参数的套索惩罚。当q = 2时,这是对特定变量的所有K个系数的分组套索惩罚,这使它们在一起全为零或非零。

对于多项式情况,用法类似于逻辑回归,我们加载一组生成的数据。

glmnet 除少数情况外,多项式逻辑回归中的可选参数 与二项式回归基本相似。

多项式回归的一个特殊选项是 type.multinomial,如果允许,则允许使用分组的套索罚分 type.multinomial = "grouped"。这将确保变量的多项式系数全部一起输入或输出,就像多元因变量一样。

我们绘制结果。

我们还可以进行交叉验证并绘制返回的对象。

预测最佳选择的λ:

##       1  
##  \[1,\] "3"
##  \[2,\] "2"
##  \[3,\] "2"
##  \[4,\] "1"
##  \[5,\] "1"
##  \[6,\] "3"
##  \[7,\] "3"
##  \[8,\] "1"
##  \[9,\] "1"
## \[10,\] "2"

r语言中对LASSO回归,Ridge岭回归和弹性网络Elastic Net模型实现2:https://developer.aliyun.com/article/1485109

相关文章
|
2月前
|
监控 安全 Linux
Arista CloudVision 2025.1 - 多云和数据中心网络自动化、监控和分析
Arista CloudVision 2025.1 - 多云和数据中心网络自动化、监控和分析
65 2
Arista CloudVision 2025.1 - 多云和数据中心网络自动化、监控和分析
|
3月前
|
运维 监控 安全
如何高效进行网络质量劣化分析与流量回溯分析?-AnaTraf
在数字化时代,网络质量分析与流量回溯对保障业务运行至关重要。网络拥塞、丢包等问题可能导致业务中断、安全隐患及成本上升。传统工具常缺乏细粒度数据,难以溯源问题。流量回溯分析可还原现场,助力精准排障。AnaTraf网络流量分析仪作为专业工具,能高效定位问题,提升团队响应力,降低运营风险。
如何高效进行网络质量劣化分析与流量回溯分析?-AnaTraf
|
3月前
|
大数据
“你朋友圈的真面目,大数据都知道!”——用社交网络分析看透人情世故
“你朋友圈的真面目,大数据都知道!”——用社交网络分析看透人情世故
111 16
|
4月前
|
存储 人工智能 编解码
Deepseek 3FS解读与源码分析(2):网络通信模块分析
2025年2月28日,DeepSeek 正式开源其颠覆性文件系统Fire-Flyer 3FS(以下简称3FS),重新定义了分布式存储的性能边界。本文基于DeepSeek发表的技术报告与开源代码,深度解析 3FS 网络通信模块的核心设计及其对AI基础设施的革新意义。
Deepseek 3FS解读与源码分析(2):网络通信模块分析
|
5月前
|
监控 Linux PHP
【02】客户端服务端C语言-go语言-web端PHP语言整合内容发布-优雅草网络设备监控系统-2月12日优雅草简化Centos stream8安装zabbix7教程-本搭建教程非docker搭建教程-优雅草solution
【02】客户端服务端C语言-go语言-web端PHP语言整合内容发布-优雅草网络设备监控系统-2月12日优雅草简化Centos stream8安装zabbix7教程-本搭建教程非docker搭建教程-优雅草solution
141 20
|
6月前
|
SQL 存储 XML
常见Web漏洞分析与防范研究
在以上内容中,结合OWASP、Toptal和Brightsec等权威来源的信息,确保回答的专业性和准确性。通过图表和思维导图的方式,可以更系统地了解和记忆Web安全知识,帮助企业在实际应用中更好地防范各种安全威胁。
211 13
|
5月前
|
监控 关系型数据库 MySQL
【01】客户端服务端C语言-go语言-web端PHP语言整合内容发布-优雅草网络设备监控系统-硬件设备实时监控系统运营版发布-本产品基于企业级开源项目Zabbix深度二开-分步骤实现预计10篇合集-自营版
【01】客户端服务端C语言-go语言-web端PHP语言整合内容发布-优雅草网络设备监控系统-硬件设备实时监控系统运营版发布-本产品基于企业级开源项目Zabbix深度二开-分步骤实现预计10篇合集-自营版
86 0
|
7月前
|
SQL 安全 网络安全
网络安全与信息安全:知识分享####
【10月更文挑战第21天】 随着数字化时代的快速发展,网络安全和信息安全已成为个人和企业不可忽视的关键问题。本文将探讨网络安全漏洞、加密技术以及安全意识的重要性,并提供一些实用的建议,帮助读者提高自身的网络安全防护能力。 ####
178 17
|
7月前
|
SQL 安全 网络安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
随着互联网的普及,网络安全问题日益突出。本文将从网络安全漏洞、加密技术和安全意识三个方面进行探讨,旨在提高读者对网络安全的认识和防范能力。通过分析常见的网络安全漏洞,介绍加密技术的基本原理和应用,以及强调安全意识的重要性,帮助读者更好地保护自己的网络信息安全。
132 10
|
7月前
|
存储 SQL 安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
随着互联网的普及,网络安全问题日益突出。本文将介绍网络安全的重要性,分析常见的网络安全漏洞及其危害,探讨加密技术在保障网络安全中的作用,并强调提高安全意识的必要性。通过本文的学习,读者将了解网络安全的基本概念和应对策略,提升个人和组织的网络安全防护能力。