用SPSS Modeler的Web复杂网络对所有腧穴进行关联规则分析3

简介: 用SPSS Modeler的Web复杂网络对所有腧穴进行关联规则分析3

r语言中对LASSO回归,Ridge岭回归和弹性网络Elastic Net模型实现1:https://developer.aliyun.com/article/1485075

惩罚因素

此参数允许用户将单独的惩罚因子应用于每个系数。每个参数的默认值为1,但可以指定其他值。特别是,任何penalty.factor 等于零的变量 都不会受到惩罚

在许多情况下,某些变量可能是重要,我们希望一直保留它们,这可以通过将相应的惩罚因子设置为0来实现:

我们从标签中看到惩罚因子为0的三个变量始终保留在模型中,而其他变量遵循典型的正则化路径并最终缩小为0。

自定义图

有时,尤其是在变量数量很少的情况下,我们想在图上添加变量标签。

我们首先生成带有10个变量的一些数据,然后,我们拟合glmnet模型,并绘制标准图。

我们希望用变量名标记曲线。在路径的末尾放置系数的位置。

多元正态

使用family = "mgaussian" option 获得多元正态分布glmnet

显然,顾名思义,y不是向量,而是矩阵。结果,每个λ值的系数也是一个矩阵。

在这里,我们解决以下问题:

这里,βj是p×K系数矩阵β的第j行,对于单个预测变量xj,我们用每个系数K向量βj的组套索罚分代替每个单一系数的绝对罚分。

我们使用预先生成的一组数据进行说明。

我们拟合数据,并返回对象“ mfit”。

mfit = glmnet(x, y, family = "mgaussian")

如果为 standardize.response = TRUE,则将因变量标准化。

为了可视化系数,我们使用 plot 函数。

注意我们设置了 type.coef = "2norm"。在此设置下,每个变量绘制一条曲线,其值等于ℓ2范数。默认设置为 type.coef = "coef",其中为每个因变量创建一个系数图。

通过使用该函数coef ,我们可以提取要求的λ值的系数, 并通过进行预测 。

## , , 1
## 
##           y1      y2      y3    y4
## \[1,\] -4.7106 -1.1635  0.6028 3.741
## \[2,\]  4.1302 -3.0508 -1.2123 4.970
## \[3,\]  3.1595 -0.5760  0.2608 2.054
## \[4,\]  0.6459  2.1206 -0.2252 3.146
## \[5,\] -1.1792  0.1056 -7.3353 3.248
## 
## , , 2
## 
##           y1      y2      y3    y4
## \[1,\] -4.6415 -1.2290  0.6118 3.780
## \[2,\]  4.4713 -3.2530 -1.2573 5.266
## \[3,\]  3.4735 -0.6929  0.4684 2.056
## \[4,\]  0.7353  2.2965 -0.2190 2.989
## \[5,\] -1.2760  0.2893 -7.8259 3.205

预测结果保存在三维数组中,其中前两个维是每个因变量的预测矩阵,第三个维表示因变量。

我们还可以进行k折交叉验证。

我们绘制结果 cv.glmnet 对象“ cvmfit”。

显示选定的λ最佳值

cvmfit$lambda.min
## \[1\] 0.04732
cvmfit$lambda.1se
## \[1\] 0.1317

逻辑回归

当因变量是分类的时,逻辑回归是另一个广泛使用的模型。如果有两个可能的结果,则使用二项式分布,否则使用多项式。

二项式模型

对于二项式模型,假设因变量的取值为G = {1,2} 。表示yi = I(gi = 1)。我们建模

可以用以下形式写

惩罚逻辑回归的目标函数使用负二项式对数似然

我们的算法使用对数似然的二次逼近,然后对所得的惩罚加权最小二乘问题进行下降。这些构成了内部和外部循环。

出于说明目的,我们 从数据文件加载预生成的输入矩阵 x 和因变量 y

对于二项式逻辑回归,因变量y可以是两个级别的因子,也可以是计数或比例的两列矩阵。

glmnet 二项式回归的其他可选参数与正态分布的参数 几乎相同。不要忘记将family 选项设置 为“ binomial”。

fit = glmnet(x, y, family = "binomial")

像以前一样,我们可以输出和绘制拟合的对象,提取特定λ处的系数,并进行预测。

逻辑回归略有不同,主要体现在选择上 type。“链接”和“因变量”不等价,“类”仅可用于逻辑回归。总之,*“链接”给出了线性预测变量

  • “因变量”给出合适的概率
  • “类别”产生对应于最大概率的类别标签。
  • “系数”计算值为的系数 s

在下面的示例中,我们在λ=0.05,0.01的情况下对类别标签进行了预测。

##      1   2  
## \[1,\] "0" "0"
## \[2,\] "1" "1"
## \[3,\] "1" "1"
## \[4,\] "0" "0"
## \[5,\] "1" "1"

对于逻辑回归,type.measure

  • “偏差”使用实际偏差。
  • “ mae”使用平均绝对误差。
  • “class”给出错误分类错误。
  • “ auc”(仅适用于两类逻辑回归)给出了ROC曲线下的面积。

例如,

它使用分类误差作为10倍交叉验证的标准。

我们绘制对象并显示λ的最佳值。

cvfit$lambda.min
## \[1\] 0.01476
cvfit$lambda.1se
## \[1\] 0.02579

coef 并且 predict 类似于正态分布案例,因此我们省略了细节。我们通过一些例子进行回顾。

## 31 x 1 sparse Matrix of class "dgCMatrix"
##                    1
## (Intercept)  0.24371
## V1           0.06897
## V2           0.66252
## V3          -0.54275
## V4          -1.13693
## V5          -0.19143
## V6          -0.95852
## V7           .      
## V8          -0.56529
## V9           0.77454
## V10         -1.45079
## V11         -0.04363
## V12         -0.06894
## V13          .      
## V14          .      
## V15          .      
## V16          0.36685
## V17          .      
## V18         -0.04014
## V19          .      
## V20          .      
## V21          .      
## V22          0.20882
## V23          0.34014
## V24          .      
## V25          0.66310
## V26         -0.33696
## V27         -0.10570
## V28          0.24318
## V29         -0.22445
## V30          0.11091

如前所述,此处返回的结果仅针对因子因变量的第二类。

##       1  
##  \[1,\] "0"
##  \[2,\] "1"
##  \[3,\] "1"
##  \[4,\] "0"
##  \[5,\] "1"
##  \[6,\] "0"
##  \[7,\] "0"
##  \[8,\] "0"
##  \[9,\] "1"
## \[10,\] "1"

多项式模型

对于多项式模型,假设因变量变量的K级别为G = {1,2,…,K}。在这里我们建模

设Y为N×K指标因变量矩阵,元素yiℓ= I(gi =ℓ)。然后弹性网惩罚的负对数似然函数变为

β是系数的p×K矩阵。βk指第k列(对于结果类别k),βj指第j行(变量j的K个系数的向量)。最后一个惩罚项是||βj|| q ,我们对q有两个选择:q∈{1,2}。当q = 1时,这是每个参数的套索惩罚。当q = 2时,这是对特定变量的所有K个系数的分组套索惩罚,这使它们在一起全为零或非零。

对于多项式情况,用法类似于逻辑回归,我们加载一组生成的数据。

glmnet 除少数情况外,多项式逻辑回归中的可选参数 与二项式回归基本相似。

多项式回归的一个特殊选项是 type.multinomial,如果允许,则允许使用分组的套索罚分 type.multinomial = "grouped"。这将确保变量的多项式系数全部一起输入或输出,就像多元因变量一样。

我们绘制结果。

我们还可以进行交叉验证并绘制返回的对象。

预测最佳选择的λ:

##       1  
##  \[1,\] "3"
##  \[2,\] "2"
##  \[3,\] "2"
##  \[4,\] "1"
##  \[5,\] "1"
##  \[6,\] "3"
##  \[7,\] "3"
##  \[8,\] "1"
##  \[9,\] "1"
## \[10,\] "2"

r语言中对LASSO回归,Ridge岭回归和弹性网络Elastic Net模型实现2:https://developer.aliyun.com/article/1485109

相关文章
|
7天前
|
数据采集 缓存 定位技术
网络延迟对Python爬虫速度的影响分析
网络延迟对Python爬虫速度的影响分析
|
5天前
|
SQL 安全 前端开发
PHP与现代Web开发:构建高效的网络应用
【10月更文挑战第37天】在数字化时代,PHP作为一门强大的服务器端脚本语言,持续影响着Web开发的面貌。本文将深入探讨PHP在现代Web开发中的角色,包括其核心优势、面临的挑战以及如何利用PHP构建高效、安全的网络应用。通过具体代码示例和最佳实践的分享,旨在为开发者提供实用指南,帮助他们在不断变化的技术环境中保持竞争力。
|
8天前
|
存储 安全 网络安全
网络安全法律框架:全球视角下的合规性分析
网络安全法律框架:全球视角下的合规性分析
19 1
|
17天前
|
网络协议 安全 算法
网络空间安全之一个WH的超前沿全栈技术深入学习之路(9):WireShark 简介和抓包原理及实战过程一条龙全线分析——就怕你学成黑客啦!
实战:WireShark 抓包及快速定位数据包技巧、使用 WireShark 对常用协议抓包并分析原理 、WireShark 抓包解决服务器被黑上不了网等具体操作详解步骤;精典图示举例说明、注意点及常见报错问题所对应的解决方法IKUN和I原们你这要是学不会我直接退出江湖;好吧!!!
网络空间安全之一个WH的超前沿全栈技术深入学习之路(9):WireShark 简介和抓包原理及实战过程一条龙全线分析——就怕你学成黑客啦!
|
17天前
|
网络协议 安全 算法
网络空间安全之一个WH的超前沿全栈技术深入学习之路(9-2):WireShark 简介和抓包原理及实战过程一条龙全线分析——就怕你学成黑客啦!
实战:WireShark 抓包及快速定位数据包技巧、使用 WireShark 对常用协议抓包并分析原理 、WireShark 抓包解决服务器被黑上不了网等具体操作详解步骤;精典图示举例说明、注意点及常见报错问题所对应的解决方法IKUN和I原们你这要是学不会我直接退出江湖;好吧!!!
|
18天前
|
JavaScript 前端开发 Java
SpringBoot_web开发-webjars&静态资源映射规则
https://www.91chuli.com/ 举例:jquery前端框架
15 0
|
1月前
|
安全 网络协议 物联网
物联网僵尸网络和 DDoS 攻击的 CERT 分析
物联网僵尸网络和 DDoS 攻击的 CERT 分析
|
3天前
|
存储 SQL 安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
【10月更文挑战第39天】在数字化时代,网络安全和信息安全成为了我们生活中不可或缺的一部分。本文将介绍网络安全漏洞、加密技术和安全意识等方面的内容,帮助读者更好地了解网络安全的重要性,并提供一些实用的技巧和方法来保护自己的信息安全。
14 2
|
4天前
|
安全 网络安全 数据安全/隐私保护
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
【10月更文挑战第38天】本文将探讨网络安全与信息安全的重要性,包括网络安全漏洞、加密技术和安全意识等方面。我们将通过代码示例和实际操作来展示如何保护网络和信息安全。无论你是个人用户还是企业,都需要了解这些知识以保护自己的网络安全和信息安全。
|
3天前
|
存储 安全 网络安全
云计算与网络安全:探索云服务中的信息安全策略
【10月更文挑战第39天】随着云计算的飞速发展,越来越多的企业和个人将数据和服务迁移到云端。然而,随之而来的网络安全问题也日益突出。本文将从云计算的基本概念出发,深入探讨在云服务中如何实施有效的网络安全和信息安全措施。我们将分析云服务模型(IaaS, PaaS, SaaS)的安全特性,并讨论如何在这些平台上部署安全策略。文章还将涉及最新的网络安全技术和实践,旨在为读者提供一套全面的云计算安全解决方案。