Python 用ARIMA、GARCH模型预测分析股票市场收益率时间序列4

简介: Python 用ARIMA、GARCH模型预测分析股票市场收益率时间序列

Python 用ARIMA、GARCH模型预测分析股票市场收益率时间序列3;https://developer.aliyun.com/article/1485073

自回归条件异方差模型 - ARCH(p)

ARCH(p) 模型可以简单地认为是应用于时间序列方差的 AR(p) 模型。另一种思考方式是,我们的时间序列 _在时间 t_的方差取决于对先前时期方差的过去观察。

ARCH(1) 模型公式

假设系列的均值为零,我们可以将模型表示为:

零均值的 ARCH(1) 模型

# 模拟ARCH(1)序列
# Var(yt) = a\_0 + a\_1\*y{t-1}\*\*2
# 如果a_1在0和1之间,那么yt就是白噪声
Y = np.epy_lik
for t in rng(ln()):
    Y\[t\] = w\[t * sqrt((a0 + a1\*y\[t-1\*\*2)
# 模拟的ARCH(1)序列,看起来像白噪声
plot(Y, lags=30)

模拟ARCH(1)过程

模拟ARCH(1)**2 过程

请注意 ACF 和 PACF 似乎在滞后 1 处显示显着性,表明方差的 AR(1) 模型可能是合适的。

广义自回归条件异方差模型 - GARCH(p,q)

简单地说,GARCH(p, q) 是一个应用于时间序列方差的 ARMA 模型,即它有一个自回归项和一个移动平均项。AR(p) 对残差的方差(平方误差)或简单地对我们的时间序列平方进行建模。MA(q) 部分对过程的方差进行建模。基本的 GARCH(1, 1) 公式是:

GARCH(1, 1) 公式

Omega (w) 是白噪声,alpha 和 beta 是模型的参数。此外 alpha\_1 + beta\_1 必须小于 1,否则模型不稳定。我们可以在下面模拟一个 GARCH(1, 1) 过程。

# 模拟一个GARCH(1, 1)过程
n = 10000
w = rnom.ral(sze=n)
eps = np.er_ike(w)
gsq =pzslie(w)
for i in rne1, n):
    sis\[i\] = a+ a1*(eps\[i-1\]\*\*2) + b1\*siq\[i-1\]
    es\[i\] = w\[i\] * srt(sisq\[i\])

模拟 GARCH(1, 1) 过程

再次注意到,总体上这个过程与白噪声非常相似,然而当我们查看平方的eps序列时,请看一下。

模拟 GARCH(1, 1) 过程平方

显然存在着自相关,ACF和PACF的滞后期的重要性表明我们的模型需要AR和MA。让我们看看我们是否能用GARCH(1, 1)模型恢复我们的过程参数。这里我们使用ARCH包中的arch_model函数。

# 将GARCH(1, 1)模型与我们模拟的EPS序列相匹配
# 我们使用arch函数
am = arch(ps)
fit(dae_freq=5)
summary())

GARCH 模型拟合摘要

现在让我们运行一个使用 SPY 收益的示例。过程如下:

  • 迭代 ARIMA(p, d, q) 模型的组合来拟合我们的时间序列。
  • 根据 AIC 最低的 ARIMA 模型选择 GARCH 模型阶数。
  • 将 GARCH(p, q) 模型拟合到我们的时间序列。
  • 检查模型残差和残差平方的自相关

另请注意,我选择了一个特定的时间段来更好地突出关键点。然而,根据研究的时间段,结果会有所不同。

for i in pq_g:
        for d in d_ng:
            for j in p_ng:
                try:
                    tpml = ARIMA(T,order(i,d,j).fi
                    
                    if tmp\_aic < best\_aic:
                        best_ic =mpac
                        best_oder = (i, d, j)
                        best\_ml =tm\_ml
# 注意我已经选择了一个特定的时间段来运行这个分析
bstmoel(TS)

拟合SPY收益的 ARIMA(3,0,2) 模型的残差

看起来像白噪声。

拟合SPY收益的 ARIMA(3,0,2) 模型的平方残差

平方残差显示自相关。让我们拟合一个 GARCH 模型。

# 现在我们可以使用最适合的arima模型参数来拟合arch模型
p_ = bst_dr
o= st_orde
q = bst_er
# 使用学生T分布通常能提供更好的拟合
arcd(TS, p=p_, o=o_, q=q_, 'StdensT')
fit(uat_eq=5, sp='ff')
summary

GARCH(3, 2) 模型拟合SPY收益

在处理非常小的数字时,会出现收敛警告。在必要时,将数字乘以10倍的系数以扩大幅度,可以起到帮助作用,但是对于这个演示来说,没有必要这样做。下面是模型的残差。

拟合SPY收益的 GARCH(3, 2) 模型残差

上面看起来像白噪声。现在让我们查看平方残差的 ACF 和 PACF。

我们已经实现了良好的模型拟合,因为平方残差没有明显的自相关。


相关文章
|
16天前
|
机器学习/深度学习 数据采集 TensorFlow
使用Python实现智能食品消费模式分析的深度学习模型
使用Python实现智能食品消费模式分析的深度学习模型
109 70
|
23天前
|
机器学习/深度学习 数据采集 供应链
使用Python实现智能食品库存管理的深度学习模型
使用Python实现智能食品库存管理的深度学习模型
138 63
|
24天前
|
机器学习/深度学习 Python
堆叠集成策略的原理、实现方法及Python应用。堆叠通过多层模型组合,先用不同基础模型生成预测,再用元学习器整合这些预测,提升模型性能
本文深入探讨了堆叠集成策略的原理、实现方法及Python应用。堆叠通过多层模型组合,先用不同基础模型生成预测,再用元学习器整合这些预测,提升模型性能。文章详细介绍了堆叠的实现步骤,包括数据准备、基础模型训练、新训练集构建及元学习器训练,并讨论了其优缺点。
43 3
|
24天前
|
机器学习/深度学习 算法 数据挖掘
线性回归模型的原理、实现及应用,特别是在 Python 中的实践
本文深入探讨了线性回归模型的原理、实现及应用,特别是在 Python 中的实践。线性回归假设因变量与自变量间存在线性关系,通过建立线性方程预测未知数据。文章介绍了模型的基本原理、实现步骤、Python 常用库(如 Scikit-learn 和 Statsmodels)、参数解释、优缺点及扩展应用,强调了其在数据分析中的重要性和局限性。
50 3
|
5天前
|
机器学习/深度学习 数据可视化 TensorFlow
使用Python实现深度学习模型的分布式训练
使用Python实现深度学习模型的分布式训练
113 73
|
18天前
|
机器学习/深度学习 数据采集 TensorFlow
使用Python实现智能食品消费习惯分析的深度学习模型
使用Python实现智能食品消费习惯分析的深度学习模型
121 68
|
14天前
|
机器学习/深度学习 数据采集 数据挖掘
使用Python实现智能食品消费市场分析的深度学习模型
使用Python实现智能食品消费市场分析的深度学习模型
91 36
|
8天前
|
机器学习/深度学习 数据采集 供应链
使用Python实现智能食品消费需求分析的深度学习模型
使用Python实现智能食品消费需求分析的深度学习模型
46 21
|
10天前
|
机器学习/深度学习 数据采集 搜索推荐
使用Python实现智能食品消费偏好预测的深度学习模型
使用Python实现智能食品消费偏好预测的深度学习模型
50 23
|
11天前
|
机器学习/深度学习 数据采集 数据挖掘
使用Python实现智能食品消费习惯预测的深度学习模型
使用Python实现智能食品消费习惯预测的深度学习模型
54 19
下一篇
DataWorks