R语言预测人口死亡率:用李·卡特(Lee-Carter)模型、非线性模型进行平滑估计

简介: R语言预测人口死亡率:用李·卡特(Lee-Carter)模型、非线性模型进行平滑估计

今天,我们在研究人口数据集,可以观察到很多波动性。

 

我们得到这样的结果:

 

 

由于我们缺少一些数据,因此我们想使用一些广义非线性模型。因此,让我们看看如何获得死亡率曲面图的平滑估计。我们编写一些代码。





D=DEATH$Male
E=EXPO$Male
A=as.numeric(as.character(DEATH$Age))
Y=DEATH$Year
I=(A<100)
base=data.frame(D=D,E=E,Y=Y,A=A)
subbase=base[I,]
subbase=subbase[!is.na(subbase$A),]

第一个想法可以是使用Poisson模型,其中死亡率是年龄和年份的平稳函数

可以使用


persp(vZ,theta=-30,col="green",shade=TRUE,xlab="Ages (0-100)",
ylab="Years (1900-2005)",zlab="Mortality rate (log)")

死亡率曲面图

 

还可以提取年份的平均值,这是 Lee-Carter模型中系数的解释


predAx=function(a) mean(predict(regbsp,newdata=data.frame(A=a,
Y=seq(min(subbase$Y),max(subbase$Y)),E=1)))
plot(seq(0,99),Vectorize(predAx)(seq(0,99)),col="red",lwd=3,type="l")

我们有以下平滑的死亡率

 


可以使用以下方法获得参数估计值


persp(vZ,theta=-30,col="green",shade=TRUE,xlab="Ages (0-100)",
ylab="Years (1900-2005)",zlab="Mortality rate (log)")

粗略的死亡率曲面图是

 

有以下   系数。


plot(seq(1,99),coefficients(regnp)[2:100],col="red",lwd=3,type="l")

 

这里我们有很多系数,但是,在较小的数据集上,我们具有更多的可变性。


代码片段



persp(vZ,theta=-30,col="green",shade=TRUE,xlab="Ages (0-100)",
ylab="Years (1900-2005)",zlab="Mortality rate (log)")

现在的死亡人数是

 

得出多年来随年龄变化的平均死亡率,



BpA=bs(seq(0,99),knots=knotsA,Boundary.knots=range(subbase$A),degre=3)
Ax=BpA%*%coefficients(regsp)[2:8]
plot(seq(0,99),Ax,col="red",lwd=3,type="l")

 

然后,我们可以使用样条函数的平滑参数,并查看对死亡率曲面的影响

persp(vZ,theta=-30,col="green",shade=TRUE,xlab="Ages (0-100)",
ylab="Years (1900-2005)",zlab="Mortality rate (log)")

相关文章
【R语言实战】——带有高斯新息的金融时序的GARCH模型拟合预测及VAR/ES风险度量
【R语言实战】——带有高斯新息的金融时序的GARCH模型拟合预测及VAR/ES风险度量
【R语言实战】——带有新息为标准学生t分布的金融时序的GARCH模型拟合预测
【R语言实战】——带有新息为标准学生t分布的金融时序的GARCH模型拟合预测
|
3月前
|
机器学习/深度学习 算法 前端开发
R语言基础机器学习模型:深入探索决策树与随机森林
【9月更文挑战第2天】决策树和随机森林作为R语言中基础且强大的机器学习模型,各有其独特的优势和适用范围。了解并熟练掌握这两种模型,对于数据科学家和机器学习爱好者来说,无疑是一个重要的里程碑。希望本文能够帮助您更好地理解这两种模型,并在实际项目中灵活应用。
|
4月前
|
资源调度 数据挖掘
R语言回归分析:线性回归模型的构建与评估
【8月更文挑战第31天】线性回归模型是统计分析中一种重要且实用的工具,能够帮助我们理解和预测自变量与因变量之间的线性关系。在R语言中,我们可以轻松地构建和评估线性回归模型,从而对数据背后的关系进行深入的探索和分析。
【R语言实战】——Logistic回归模型
【R语言实战】——Logistic回归模型
|
3月前
|
数据采集 机器学习/深度学习 数据可视化
R语言从数据到决策:R语言在商业分析中的实践
【9月更文挑战第1天】R语言在商业分析中的应用广泛而深入,从数据收集、预处理、分析到预测模型构建和决策支持,R语言都提供了强大的工具和功能。通过学习和掌握R语言在商业分析中的实践应用,我们可以更好地利用数据驱动企业决策,提升企业的竞争力和盈利能力。未来,随着大数据和人工智能技术的不断发展,R语言在商业分析领域的应用将更加广泛和深入,为企业带来更多的机遇和挑战。
|
2月前
|
数据挖掘 C语言 C++
R语言是一种强大的统计分析工具,提供了丰富的函数和包用于时间序列分析。
【10月更文挑战第21天】时间序列分析是一种重要的数据分析方法,广泛应用于经济学、金融学、气象学、生态学等领域。R语言是一种强大的统计分析工具,提供了丰富的函数和包用于时间序列分析。本文将介绍使用R语言进行时间序列分析的基本概念、方法和实例,帮助读者掌握R语言在时间序列分析中的应用。
53 3
|
7月前
|
数据可视化 数据挖掘 API
【R语言实战】聚类分析及可视化
【R语言实战】聚类分析及可视化
|
7月前
|
机器学习/深度学习 数据可视化
R语言逻辑回归logistic模型ROC曲线可视化分析2例:麻醉剂用量影响、汽车购买行为2
R语言逻辑回归logistic模型ROC曲线可视化分析2例:麻醉剂用量影响、汽车购买行为
|
3月前
|
数据采集 数据可视化 数据挖掘
R语言在金融数据分析中的深度应用:探索数据背后的市场智慧
【9月更文挑战第1天】R语言在金融数据分析中展现出了强大的功能和广泛的应用前景。通过丰富的数据处理函数、强大的统计分析功能和优秀的可视化效果,R语言能够帮助金融机构深入挖掘数据价值,洞察市场动态。未来,随着金融数据的不断积累和技术的不断进步,R语言在金融数据分析中的应用将更加广泛和深入。
下一篇
DataWorks