如何用R语言在机器学习中建立集成模型?

简介: 如何用R语言在机器学习中建立集成模型?

介绍

大多数时候,我能够破解特征工程部分,但可能没有使用多个模型的集合。

在本文中,我将向您介绍集成建模的基础知识。另外,为了向您提供有关集合建模的实践经验,我们将使用R对hackathon问题进行集成。

 

1.什么是集成?

通常,集成是一种组合两种或多种类似或不同类型算法的技术,称为基础学习者。这样做是为了建立一个更加健壮的系统,其中包含了所有基础学习者的预测。可以理解为多个交易者之间的会议室会议,以决定股票的价格是否会上涨。

由于他们都对股票市场有不同的理解,因此从问题陈述到期望的结果有不同的映射功能。因此,他们应该根据自己对市场的理解对股票价格做出各种预测。

 

 

2.集合的类型

在进一步详细介绍之前,您应该了解的一些基本概念是:

  • 平均:它被定义为 在回归问题的情况下或在预测分类问题的概率时从模型中获取预测的平均值。

  • 多数投票:它被 定义为 在预测分类问题的结果的同时,从多个模型预测中以最大投票/推荐进行预测。

  • 加权平均值:在此,不同的权重应用于来自多个模型的预测,然后取平均值 。

 

这些是一些主要使用的技术:

  1. Bagging:Bagging也称为bootstrap聚合。

 

增强的一些例子是XGBoost,GBM,ADABOOST等。

  1. 堆叠:在堆叠多层机器时,学习模型彼此叠加,每个模型将其预测传递给上面层中的模型,顶层模型根据模型下面的模型输出做出决策。

 

3.集合的优点和缺点

3.1优点

  • 集成是一种经过验证的方法,可以提高模型的准确性,适用于大多数情况。
  • 集成使模型更加稳健和稳定,从而确保在大多数情况下测试用例具有良好的性能。
  • 您可以使用集成来捕获数据中的线性和简单以及非线性复杂关系。这可以通过使用两个不同的模型并形成两个集合来完成。

 

3.2缺点

  • 集成减少了模型的可解释性,并且很难在最后绘制任何关键的业务见解。
  • 这非常耗时,因此可能不是实时应用程序的最佳选择。

4.在R中实施集合的实用指南





#让我们看一下数据集数据的结构
'data.frame':614 obs。13个变量:


$ ApplicantIncome:int 5849 4583 3000 2583 6000 5417 2333 3036 4006 12841 ...
$ CoapplicantIncome:num 0 1508 0 2358 0 ...
$ LoanAmount:int NA 128 66 120 141 267 95 158 168 349 ...
$ Loan_Amount_Term:int 360 360 360 360 360 360 360 360 360 360 ...
$ Credit_History:int 1 1 1 1 1 1 1 0 1 1 ...




#使用中位数输入缺失值
preProcValues < -  preProcess(data,method = c(“medianImpute”,“center”,“scale”))


#Spliting训练根据结果分为两部分:75%和25%
index < -  createDataPartition(data_processed $ Loan_Status,p = 0.75,list = FALSE)
trainSet < -  data_processed [index,]
testSet < -  data_processed [-index,]

我将数据分成两部分,我将用它来模拟训练和测试操作。我们现在定义训练控件以及预测变量和结果变量:




#定义多个模型
fitControl < -  trainControl(
  method =“cv”, savePredictions ='final',
classProbs = T)


#Defining预测器和结果

现在让我们开始训练随机森林并在我们创建的测试集上测试其准确性:




#检查随机森林模型的准确性
混淆矩阵和统计
参考
预测N Y.
N 28 20
Y 9 96
准确度:0.8105         

我们使用随机森林模型获得了0.81的准确度。让我们看看KNN的表现:


#训练knn模型
#Predicting使用knn模型
testSet $ pred_knn <-predict(object = model_knn,testSet [,predictors])
#检查随机森林模型的准确性
混淆矩阵和统计

预测N Y.
N 29 19
Y 2 103
准确度:0.8627       

我们能够通过单独的KNN模型获得0.86的准确度。在我们继续创建这三者的集合之前,让我们看看Logistic回归的表现。




#Training Logistic回归模型
#Predicting使用knn模型
testSet $ pred_lr <-predict(object = model_lr,testSet [,predictors])
#检查随机森林模型的准确性
混淆矩阵和统计
参考
预测N Y.
N 29 19
Y 2 103
准确度:0.8627        

逻辑回归也给出了0.86的准确度。

现在,让我们尝试用这些模型形成集合的不同方法,如我们所讨论的:

  • 平均:在此,我们将平均三个模型的预测。由于预测是“Y”或“N”,因此平均值对于此二进制分类没有多大意义。但是,我们可以对观察概率的平均值进行平均处理。


#Predicting概率
testSet $ pred_rf_prob <-predict(object = model_rf,testSet [,predictors],type ='prob')
testSet $ pred_knn_prob <-predict(object = model_knn,testSet [,predictors],type ='prob')
testSet $ pred_lr_prob <-predict(object = model_lr,testSet [,predictors],type ='prob')


#Spits到0.5的二进制类 多数表决:在多数表决中,我们将为大多数模型预测的观察指定预测。由于我们有三个模型用于二进制分类任务,因此无法实现平局。#多数投票 加权平均值:我们可以采用加权平均值,而不是采用简单平均值。通常,对于更准确的模型,预测的权重很高。让我们将0.5分配给logistic回归,将0.25分配给KNN和随机森林。
#Taking加权平均预测
#Spits到0.5的二进制类 在继续讨论之前,我想回顾一下我们之前讨论过的关于个体模型精度和模型间预测
  • 到目前为止,我们在顶层使用了简单的公式。
  • 相反,我们可以使用另一种机器学习模型,这实际上就是堆叠。
  • 我们可以使用线性回归来制作线性公式,用于在回归问题中进行预测,以便在分类问题的情况下将底层模型预测映射到结果或逻辑回归。

 

在同一个例子中,让我们尝试将逻辑回归和GBM应用为顶层模型。请记住,我们将采取以下步骤:

  1. 在训练数据上训练各个基础层模型。
  2. 预测使用每个基础层模型来训练数据和测试数据。
  3. 现在,再次对顶层模型进行训练,对底层模型进行训练数据的预测。
  4. 最后,使用顶层模型预测底层模型的预测,这些模型是为测试数据而做出的。

在步骤2中需要注意的一件非常重要的事情是,您应始终对训练数据进行包预测,否则基础层模型的重要性将仅取决于基础层模型可以如何调用训练数据。

 

  • 步骤1:在训练数据上训练各个基础层模型


#Defining 
fitControl < -  trainControl(
method =“cv”, savePredictions ='final',#保存最佳参数组合的折叠预测
classProbs = T#保存折叠预测的类概率
#
  • 步骤2:使用每个基础层模型预测训练数据和测试数据
步骤3:现在再次训练顶层模型对底层模型的预测已经对训练数据进行了预测

首先,让我们从GBM模型开始作为顶层模型。


 
#Predictors用于顶层模型
predictors_top <-c( 'OOF_pred_rf', 'OOF_pred_knn', 'OOF_pred_lr')
#GBM作为顶层模型

同样,我们也可以使用逻辑回归创建一个集合作为顶层模型。


#Logistic回归作为顶层模型
model_glm < -
( [,predictors_top],  trControl = fitControl,tuneLength = 3)
  • 步骤4:最后,使用顶层模型预测已经为测试数据而做出的底层模型的预测


#predict使用GBM顶层模型
测试集$ gbm_stacked <-predict(model_gbm,测试集[,predictors_top])
#predict使用logictic回归顶层模型
测试集$ glm_stacked <-predict(model_glm,测试集[,predictors_top])

请注意, 选择模型非常重要,以便从整体中获得最佳效果。

还有问题?联系我们!

相关文章
|
1月前
|
机器学习/深度学习 存储 设计模式
特征时序化建模:基于特征缓慢变化维度历史追踪的机器学习模型性能优化方法
本文探讨了数据基础设施设计中常见的一个问题:数据仓库或数据湖仓中的表格缺乏构建高性能机器学习模型所需的历史记录,导致模型性能受限。为解决这一问题,文章介绍了缓慢变化维度(SCD)技术,特别是Type II类型的应用。通过SCD,可以有效追踪维度表的历史变更,确保模型训练数据包含完整的时序信息,从而提升预测准确性。文章还从数据工程师、数据科学家和产品经理的不同视角提供了实施建议,强调历史数据追踪对提升模型性能和业务洞察的重要性,并建议采用渐进式策略逐步引入SCD设计模式。
103 8
特征时序化建模:基于特征缓慢变化维度历史追踪的机器学习模型性能优化方法
|
13天前
|
机器学习/深度学习 人工智能 自然语言处理
PAI Model Gallery 支持云上一键部署 DeepSeek-V3、DeepSeek-R1 系列模型
DeepSeek 系列模型以其卓越性能在全球范围内备受瞩目,多次评测中表现优异,性能接近甚至超越国际顶尖闭源模型(如OpenAI的GPT-4、Claude-3.5-Sonnet等)。企业用户和开发者可使用 PAI 平台一键部署 DeepSeek 系列模型,实现 DeepSeek 系列模型与现有业务的高效融合。
|
3月前
|
机器学习/深度学习 Python
堆叠集成策略的原理、实现方法及Python应用。堆叠通过多层模型组合,先用不同基础模型生成预测,再用元学习器整合这些预测,提升模型性能
本文深入探讨了堆叠集成策略的原理、实现方法及Python应用。堆叠通过多层模型组合,先用不同基础模型生成预测,再用元学习器整合这些预测,提升模型性能。文章详细介绍了堆叠的实现步骤,包括数据准备、基础模型训练、新训练集构建及元学习器训练,并讨论了其优缺点。
165 3
|
14天前
|
IDE Linux API
轻松在本地部署 DeepSeek 蒸馏模型并无缝集成到你的 IDE
本文将详细介绍如何在本地部署 DeepSeek 蒸馏模型,内容主要包括 Ollama 的介绍与安装、如何通过 Ollama 部署 DeepSeek、在 ChatBox 中使用 DeepSeek 以及在 VS Code 中集成 DeepSeek 等。
1133 14
轻松在本地部署 DeepSeek 蒸馏模型并无缝集成到你的 IDE
|
1月前
|
人工智能 数据可视化 开发者
FlowiseAI:34K Star!集成多种模型和100+组件的 LLM 应用低代码开发平台,拖拽组件轻松构建程序
FlowiseAI 是一款开源的低代码工具,通过拖拽可视化组件,用户可以快速构建自定义的 LLM 应用程序,支持多模型集成和记忆功能。
117 14
FlowiseAI:34K Star!集成多种模型和100+组件的 LLM 应用低代码开发平台,拖拽组件轻松构建程序
|
25天前
|
人工智能 JSON 数据可视化
集成500+多模态现实任务!全新MEGA-Bench评测套件:CoT对开源模型反而有害?
多模态模型在处理图像、文本、音频等数据方面能力不断提升,但其性能评估一直是个挑战。为此,研究团队推出了MEGA-Bench评测套件,集成505个现实任务,涵盖广泛领域和数据类型,由16位专家标注。它采用灵活输出格式,提供多维度评估指标,并配有交互式可视化工具,为模型优化提供了重要支持。然而,评估过程复杂且耗时,COT方法对开源模型性能的影响也值得探讨。论文链接:https://arxiv.org/abs/2410.10563
58 29
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
云上一键部署 DeepSeek-V3 模型,阿里云 PAI-Model Gallery 最佳实践
本文介绍了如何在阿里云 PAI 平台上一键部署 DeepSeek-V3 模型,通过这一过程,用户能够轻松地利用 DeepSeek-V3 模型进行实时交互和 API 推理,从而加速 AI 应用的开发和部署。
|
1月前
|
机器学习/深度学习 人工智能 算法
机器学习算法的优化与改进:提升模型性能的策略与方法
机器学习算法的优化与改进:提升模型性能的策略与方法
276 13
机器学习算法的优化与改进:提升模型性能的策略与方法
|
1月前
|
机器学习/深度学习 安全 PyTorch
FastAPI + ONNX 部署机器学习模型最佳实践
本文介绍了如何结合FastAPI和ONNX实现机器学习模型的高效部署。面对模型兼容性、性能瓶颈、服务稳定性和安全性等挑战,FastAPI与ONNX提供了高性能、易于开发维护、跨框架支持和活跃社区的优势。通过将模型转换为ONNX格式、构建FastAPI应用、进行性能优化及考虑安全性,可以简化部署流程,提升推理性能,确保服务的可靠性与安全性。最后,以手写数字识别模型为例,展示了完整的部署过程,帮助读者更好地理解和应用这些技术。
97 20
|
1天前
|
机器学习/深度学习 数据挖掘 定位技术
多元线性回归:机器学习中的经典模型探讨
多元线性回归是统计学和机器学习中广泛应用的回归分析方法,通过分析多个自变量与因变量之间的关系,帮助理解和预测数据行为。本文深入探讨其理论背景、数学原理、模型构建及实际应用,涵盖房价预测、销售预测和医疗研究等领域。文章还讨论了多重共线性、过拟合等挑战,并展望了未来发展方向,如模型压缩与高效推理、跨模态学习和自监督学习。通过理解这些内容,读者可以更好地运用多元线性回归解决实际问题。

热门文章

最新文章