基于R语言的lmer混合线性回归模型

简介: 基于R语言的lmer混合线性回归模型

混合模型适合需求吗?

混合模型在很多方面与线性模型相似。它估计一个或多个解释变量对响应变量的影响。混合模型的输出将给出一个解释值列表,其效应值的估计值和置信区间,每个效应的p值以及模型拟合程度的至少一个度量。如果您有一个变量将您的数据样本描述为您可能收集的数据的子集,则应该使用混合模型而不是简单的线性模型。


什么概率分布最适合数据?

假设你已经决定要运行混合模型。接下来你要做的是找到最适合你的数据的概率分布。


#lnorm表示对数正态
qqp (recog $ Aggression.t,“lnorm” )
#qqp要求估计负二项式,泊松#和伽玛分布的参数。
可以使用fitdistr #函数生成估计值。

查看我使用qqp生成的图。y轴表示观察值,x轴表示由分布模拟的分位数。红色的实线表示完美的分布拟合,虚线的红色线条表示完美的分布拟合的置信区间。


如何将混合模型拟合到数据

数据是正态分布的

如果你的数据是正态分布的, 你可以使用线性混合模型(LMM)。您将需要加载lme4软件包并调用lmer函数。


如果你的数据不正态分布

用于估计模型中效应大小的REML和最大似然方法会对数据不适用正态性假设,因此您必须使用不同的方法进行参数估计。


结束 :了解你的数据

在熟悉数据之前,您无法真正了解哪些分析适合您的数据,熟悉这些数据的最佳方法是绘制它们。通常我的第一步是做我感兴趣的变量的密度图,按照我最感兴趣的解释变量来分解。

绘图对评估模型拟合也很重要。通过以各种方式绘制拟合值,您可以确定哪种模型适合描述数据。

该图所做的是创建一条代表零的水平虚线:与最佳拟合线平均偏离零。

结果正如我所希望的那样:与最佳拟合线的偏差趋于零。如果这条实线没有覆盖虚线,那意味着最适合的线条不太适合。


MCMC模型图形比较

这些随机效果看起来非常尖锐,不像白色噪音。所以让我们尝试用更多的迭代来重新设计模型。这是计算量更大,但产生更准确的结果。

现在更接近线条周围的白色噪音,这意味着更好的模型。

相关文章
【R语言实战】——带有高斯新息的金融时序的GARCH模型拟合预测及VAR/ES风险度量
【R语言实战】——带有高斯新息的金融时序的GARCH模型拟合预测及VAR/ES风险度量
【R语言实战】——带有新息为标准学生t分布的金融时序的GARCH模型拟合预测
【R语言实战】——带有新息为标准学生t分布的金融时序的GARCH模型拟合预测
|
4月前
|
机器学习/深度学习 算法 前端开发
R语言基础机器学习模型:深入探索决策树与随机森林
【9月更文挑战第2天】决策树和随机森林作为R语言中基础且强大的机器学习模型,各有其独特的优势和适用范围。了解并熟练掌握这两种模型,对于数据科学家和机器学习爱好者来说,无疑是一个重要的里程碑。希望本文能够帮助您更好地理解这两种模型,并在实际项目中灵活应用。
|
5月前
|
资源调度 数据挖掘
R语言回归分析:线性回归模型的构建与评估
【8月更文挑战第31天】线性回归模型是统计分析中一种重要且实用的工具,能够帮助我们理解和预测自变量与因变量之间的线性关系。在R语言中,我们可以轻松地构建和评估线性回归模型,从而对数据背后的关系进行深入的探索和分析。
【R语言实战】——Logistic回归模型
【R语言实战】——Logistic回归模型
|
8月前
|
数据可视化
R语言广义线性混合模型GLMMs在生态学中应用可视化2实例合集|附数据代码2
R语言广义线性混合模型GLMMs在生态学中应用可视化2实例合集|附数据代码
|
8月前
|
数据可视化 数据挖掘
R语言广义线性混合模型GLMMs在生态学中应用可视化2实例合集|附数据代码1
R语言广义线性混合模型GLMMs在生态学中应用可视化2实例合集|附数据代码
|
8月前
|
前端开发 数据可视化
R语言广义线性混合模型(GLMM)bootstrap预测置信区间可视化
R语言广义线性混合模型(GLMM)bootstrap预测置信区间可视化
|
8月前
|
算法 搜索推荐
R语言混合SVD模型IBCF协同过滤推荐算法研究——以母婴购物平台为例
R语言混合SVD模型IBCF协同过滤推荐算法研究——以母婴购物平台为例
|
8月前
|
机器学习/深度学习 数据可视化
R语言Stan贝叶斯回归置信区间后验分布可视化模型检验|附数据代码
R语言Stan贝叶斯回归置信区间后验分布可视化模型检验|附数据代码